1. Kurada, S. and Bradley, C. A review of machine vision sensors for tool condition monitoring. Computers in Industry, 1997, 34, 55–72.
doi:10.1016/S0166-3615(96)00075-9
2. Teti, R. Machining of composite materials. Ann. CIRP, 2002, 51, 611–634.
doi:10.1016/S0007-8506(07)61703-X
3. Weckenmann, A. and Nalbantic, K. Precision measurement of cutting tools with two matched optical 3d-sensors. Ann. CIRP, 2003, 52, 443–446.
doi:10.1016/S0007-8506(07)60621-0
4. Kopac, J. and Sali, S. Tool wear monitoring during the turning process. J. Mater. Proc. Technol., 2001, 113, 312–316.
doi:10.1016/S0924-0136(01)00621-5
5. Wang, W., Hong, G. and Wong, Y. Flank wear measurement by a threshold independent method with sub-pixel accuracy. Internat. J. Machine Tools Manufact., 2006, 46, 199–207.
doi:10.1016/j.ijmachtools.2005.04.006
6. Lim, G. Tool-wear monitoring in machine turning. J. Mater. Proc. Technol., 1995, 51, 25–36.
doi:10.1016/0924-0136(94)01354-4
7. Jurkovic, J., Korosec, M. and Kopac, J. New approach in tool wear measuring technique using CCD vision system. Internat. J. Machine Tools Manufact., 2005, 45, 1023–1030.
doi:10.1016/j.ijmachtools.2004.11.030
8. Kurada, S. and Bradley, C. A machine vision system for tool wear assessment. Tribology Internat., 1997, 30, 295–304.
doi:10.1016/S0301-679X(96)00058-8
9. Sick, B. On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mech. Syst. Signal Proc., 2002, 16, 487–546.
10. Wang, W., Wong, Y. and Hong, G. Flank wear measurement by successive image analysis. Computers in Industry, 2005, 56, 816–830.
doi:10.1016/j.compind.2005.05.009
11. Alegre, E., Barreiro, J., Cáceres, H., Hernández, L. K., Fernández, R. and Castejón, M. Design of a computer vision system to estimate tool wearing. Mater. Sci. Forum, 2006, 526, 61–66.
doi:10.4028/0-87849-417-0.61
12. Lanzetta, M. A new flexible high-resolution vision sensor for tool condition monitoring. J. Mater. Proc. Technol., 2001, 119, 73–82.
doi:10.1016/S0924-0136(01)00878-0
13. Sortino, M. Application of statistical filtering for optical detection of tool wear. Internat. J. Machine Tools Manufact., 2003, 43, 493–497.
doi:10.1016/S0890-6955(02)00266-3
14. Castejón, M., Alegre, E., Barreiro, J. and Hernández, L. K. On-line tool wear monitoring using geometric descriptors from digital images. Internat. J. Machine Tools Manufact., 2007, 47, 1847–1853.
doi:10.1016/j.ijmachtools.2007.04.001
15. Ghosh, N., Ravix, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R. and Chattopadhyay, A. B. Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Signal Proc., 2007, 21, 466–479.
16. Brezak, D., Udiljak, T., Majetic, D., Novakovic, B. and Kasac, J. Tool wear monitoring using radial basis function neural network. Neural Networks, 2004, 11, 1859–1862.
17. Littlefair, G., Javed, M. A. and Smith, G. T. Fusion of integrated multisensory data for tool wear monitoring. Neural Networks, 1995, 2, 734–737.
18. Sunil, V. T. and Shin, Y. C. Design and implementation of tool wear monitoring with radial basis function neural networks. In Proc. Am. Control Confer., Seattle, 1995, vol. 3, 1722–1726.
19. Barreiro, J., Castejón, M., Alegre, E. and Hernández, L. K. Use of descriptors based on moments from digital images for tool wear monitoring. Internat. J. Machine Tools Manufact., 2008, 48, 1005–1013.
doi:10.1016/j.ijmachtools.2008.01.005
20. Wang, G. B. and Wang, S. G. Parallel recursive computation of the inverse Legendre moment transforms for signal and image reconstruction. IEEE Signal Process. Lett., 2004, 11, 929–932.
doi:10.1109/LSP.2004.838187