ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
The quest for truth, particularly in mechanics; pp. 253–272
PDF | doi: 10.3176/eng.2013.4.01

Author
Miloslav Okrouhlík
Abstract

The author ponders about things that necessarily come into engineering mind when the results obtained by theoretical, numerical and experimental approaches in solid continuum mechanics are correlated and compared with a pious wish to ascertain which of them are ‘truer’ or closer to ‘reality’. This invokes many questions. How ancient and contemporary philosophers viewed the truth? How is truth related to consistency and validity of theoretical, numerical and experimental models we are inventing and employing? What is the role of threshold in physics, engineering, computation and in experiment? How are the basic quantities like time, force, stress, etc. defined? Do we properly understand them? What is the role of singularity in mathematics, physics and in engineering? The doubts stemming from uneasy answers to above pertinent questions are complemented by discussing examples from theoretical, numerical and experimental results obtained by solving dynamical problems in solid continuum mechanics. It should be stressed out that the role of doubts in our understanding the World plays a significantly positive role.

References

  1. Encyclopedia of Physics, vol. III/1 (Fluege, S., ed.). Springer, Berlin, 1960.

  2. Mase, G. R. Theory and Problems of Continuum Mechanics. Schaum’s Outline Series, Mc Graw-Hill, New York, 1970.

  3. Book 11 of St. Augustine’s Confessions. http://www9.georgetown.edu/faculty/jod/latinconf/ 11.html.

  4. Eddington, A. S. New Pathways in Science. Cambridge University Press, Cambridge, 1935.

  5. Hawkins, S. Black Holes and Baby Universes and Other Essays. A Bantam Book, New York, 1993.

  6. Genesis. The Holy Bible: King James Version. Amer. Bible Society, New York, 1999.

  7. Weinberg, S. The First Three Minutes. BasicBooks, New York, 1993.

  8. Davies, P. The Last Three Minutes. BasicBooks, New York, 1994.

  9. Penrose, R. Cycles of Time: An Extraordinary New View of the Universe. The Bodley Head, 2010.

10. Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton University Press, Princeton, New Jersey, 1982.

11. Einstein, A. and Rosen, N. The particle problem in the general theory of relativity. Phys. Rev., 1935, 48, 73–77.
http://dx.doi.org/10.1103/PhysRev.48.73

12. Bergmann, P. Some Strangeness in the Proposition. Addison Wesley, 1980.

13. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity (first edition 1892). Dover Publications, New York, 1944.

14. Graff, K. Wave Motion in Elastic Solids. Clarendon Press, Cambridge, 1975.

15. Okrouhlík, M. Impact induced stress wave energy flux. Validation of numerical and experi­mental approaches. In Proc. International Conference on Vibration Problems. Prague, 2011, 5–8. Springer Proceedings in Physics 139. Springer, New York, 2011, 25–34.

16. Okrouhlík, M. (ed.). Mechanics of contact impact. Appl. Mech. Rev., 1994, 47, No. 2.
http://dx.doi.org/10.1115/1.3111069

17. Belytschko, T., Liu, W. K. and Moran, B. Nonlinear Finite Elements for Continua and Structures. John Wiley, Chichester, 2000.

18. Dokainish, M. A. and Subbaraj, K. A survey of direct time integration methods in computa­tional structural dynamics, I. Explicit methods. Computers and Structures, 1989, 6, 1371–1386.
http://dx.doi.org/10.1016/0045-7949(89)90314-3

19. Bathe, K.-J. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New Jersey, 1996.

20. Marc manuals. MSC Software Corporation, 2 MacArthur Place, Santa Ana, CA 92707 USA; www.mscsoftware.com

21. Ansys manuals. http://www.ansys.com

22. Okrouhlík, M. and Pták, S. Assessment of experiment by finite element analysis: Comparison, self-check and remedy. Strojnícky časopis, 2005, 56, 18–39.

23. Kolsky, H. Stress Waves in Solids. Clarendon Press, Oxford, 1953.

24. Okrouhlík, M., Pták, S., Lundberg, B. and Valdek, U. FE Assessment of an experiment employed for analysis of the transient stress energy flux through spiral slots in axially impacted cylindrical tube. J. Mech. Eng., 2009, 60, 181–209.

25. Kahan, W. IEEE Standard 754 for Binary Floating-Point Arithmetic. Lecture Notes on the Status of IEEE 754, Elect. Eng. & Computer Science. UCLA, Berkeley, 1997.

Back to Issue

Back issues