ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Separation of Lamb modes at a plate edge by using orthogonality relation; pp. 283–291
PDF | doi: 10.3176/eng.2013.4.03

Authors
Madis Ratassepp, Aleksander Klauson, Farid Chati, Fernand Léon, Gerard Maze
Abstract

Lamb modes are widely used for non-destructive evaluation of plate-like structures and simple interpretation procedures for the analysis of the monitored structures are needed. In this study we apply the orthogonality relation based method for post-processing Finite Element (FE) predictions in order to separate Lamb modes at a plate edge. The reflected wave field from the free edge is a superposition of all the eigenmodes of an infinite plate. The eigenmode amplitudes of the reflected wave field are determined by applying the orthogonality-based method. Overlapping wavepackets of Lamb modes at a plate edge are simulated by using the FE model of the incident S0 mode in a plate with a crack. Time-domain signals of propagating and non-propagating modes are extracted.

References

 1. Cicero, T., Cawley, P., Simonetti, F. and Rokhlin, S. I. Potential and limitation of a decon­volu­tion approach for guided wave structural health monitoring. Structural Health Monitoring, 2009, 8, 381–395.
http://dx.doi.org/10.1177/1475921709102086

  2. Alleyne, D. N. and Cawley, P. A two-dimensional Fourier transform method for the measure­ment of propagating multimode signals. J. Acoust. Soc. Am., 1991, 89, 1159–1168.
http://dx.doi.org/10.1121/1.400530

  3. Moreau, L., Castaings, M., Hosten, B. et al. An orthogonality relation-based technique for post-processing finite element predictions of waves scattering in solid waveguides. J. Acoust. Soc. Am., 2006, 120, 611–620.
http://dx.doi.org/10.1121/1.2216563

  4. Fraser, W. Orthogonality relation for the Rayleigh–Lamb modes of vibration of a plate. J. Acoust. Soc. Am., 1976, 59, 215–216.
http://dx.doi.org/10.1121/1.380851

  5. Moreau, L. and Castaings, M. The use of orthogonality relation for reducing the size of finite element models for 3D guided waves scattering problems. Ultrasonics, 2008, 48, 357–366.
http://dx.doi.org/10.1016/j.ultras.2008.01.005

  6. Predoi, M. V. and Rousseau, M. Recent results about Lamb waves reflection at the free edge of an elastic layer. Acta Acustica united with Acoustica, 2003, 89, 632–639.

  7. Shkerdin, G. and Glorieux, C. Lamb mode conversion in a plate with a delamination. J. Acoust. Soc. Am., 2004, 116, 2089–2100.
http://dx.doi.org/10.1121/1.1784435

  8. Gunawan, A. and Hirose, S. Reflection of obliquely incident guided waves by an edge of a plate. Mater. Trans., 2007, 48, 1236–1243.
http://dx.doi.org/10.2320/matertrans.I-MRA2007852

  9. Torvik, P. J. Reflection of wave trains in semi-infinite plates. J. Acoust. Soc. Am., 1967, 41, 346–353.
http://dx.doi.org/10.1121/1.1910344

10. Gregory, R. D. and Gladwell, I. The reflection of a symmetric Rayleigh–Lamb wave at the fixed or free edge of a plate. J. Elasticity, 1983, 13, 185–206.
http://dx.doi.org/10.1007/BF00041235

11. Cho, Y. and Rose, J. L. A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc. Am., 1996, 99, 2097–2109.
http://dx.doi.org/10.1121/1.415396

12. Diligent, O. and Lowe, M. J. S. Prediction and measurement of nonpropagating Lamb modes at the free end of a plate when the fundamental antisymmetric mode is incident. J. Acoust. Soc. Am., 2003, 113, 3032–3042.
http://dx.doi.org/10.1121/1.1568758

13. Morvan, B., Wilkie-Chancellier, N., Duflo, H. and Duclos, J. Lamb wave reflection at the free edge of a plate. J. Acoust. Soc. Am., 2003, 113, 1417–1425.
http://dx.doi.org/10.1121/1.1539521

14. Galan, J. M. and Abascal, R. Lamb mode conversion at edges. A hybrid boundary element-finite-element solution. J. Acoust. Soc. Am., 2005, 117, 1777–1784.
http://dx.doi.org/10.1121/1.1857525

15. Feng, F. L., Shen, J. Z., Deng, J. J. and Wang, Q. P. Analytical solution of Lamb wave scattering at plate end. Adv. Mat. Res., 2011, 199–200, 949–952.
http://dx.doi.org/10.4028/www.scientific.net/AMR.199-200.949

16. Graff, K. F. Wave Motion in Elastic Solids. Dover Publ., New York, 1991.

17. ANSYS® Academic Research, Release 13.0.

Back to Issue

Back issues