Direct nitridation of hexagonal aluminium nitride (AlN), using additive like NH4Cl, was performed from Al metal powder. Different methods of AlN synthesis, viz. a) Al powder, b) Al and NH4Cl, c) Al and NH4Cl with urea, were carried out in continuous flowing of N2 gas at 900 °C for 5 h. The synthesized powder was characterized by employing TGA/DTA, XRD, FTIR, SEM, UV-VIS Spectroscopy and CHNS analysis. The mechanism for the formation of AlN by the influence of additive and role of urea are discussed.
1. Weimer, A. W. Carbide, Nitride and Boride Material Synthesis and Processing. Chapman & Hall, London, 1997.
2. Wu, C., Yang, Q., Huang, C., Wang, D., Yin, P., Li, T. and Xie, Y. Facile solvent-free synthesis of pure-phased AlN nanowhiskers at a low temperature. J. Solid State Chem., 2004, 177, 3522–3528.
http://dx.doi.org/10.1016/j.jssc.2004.06.035
3. Jackson, T. B., Virkar, A. V., More, K. L., Dinwiddie, R. B., Jr. and Cutler, R. A. High-thermal-conductivity aluminium nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc., 1997, 80, 1421–1435.
http://dx.doi.org/10.1111/j.1151-2916.1997.tb03000.x
4. Watari, K., Hwang, H. J., Toriyama, M. and Kanzaki, S. Low-temperature sintering and high thermal conductivity of YLiO2-doped AlN ceramics. J. Am. Ceram. Soc., 1996, 79, 1979–1981.
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08024.x
5. Hou, Q., Mutharasan, R. and Koczak, M. Feasibility of aluminium nitride formation in aluminium alloys. Mater. Sci. Eng. A, 1995, 195, 121–129.
http://dx.doi.org/10.1016/0921-5093(94)06511-X
6. Sheppard, L. M. Aluminium nitride: a versatile but challenging material. Am. Ceram. Soc. Bull., 1990, 69, 1801–1812.
7. Bachelard, B. and Joubert, P. Aluminium nitride by carbothermal nitridation. Mater. Sci. Eng. A, 1989, 109, 247–251.
http://dx.doi.org/10.1016/0921-5093(89)90595-9
8. Moya, J. S., Iglesias, J. E., Limpo, J., Escrina, J. A., Makhonin, N. S. and Rodriguez, M. A. Single crystal AlN fibers obtained by self-propagating high-temperature synthesis. Acta Mater., 1997, 45, 3089–3094.
http://dx.doi.org/10.1016/S1359-6454(97)00107-9
9. Kasu, M. and Kobayashi, N. Field-emission characteristics and large current density of heavily Si-doped AlN and AlxGa1-xN (0.38 > x < 1). Appl. Phys. Lett., 2001, 79, 3642–3644.
http://dx.doi.org/10.1063/1.1421223
10. Tondare, V. N., Balasubramanian, C., Shende, S. V., Joag, D. S., Godbole, V. P., Bhoraskar, S. V. and Bhadbhade, M. Field emission from open ended aluminium nitride nanotubes. Appl. Phys. Lett., 2002, 80, 4813–4815.
http://dx.doi.org/10.1063/1.1482137
11. Wu, Q., Hu, Z., Wang, X. Z., Lu, Y. N., Huo, K. F., Deng, S. Z., Xu, N. S., Shen, B., Zhang, R. and Chen, Y. Extended vapor-liquid-solid growth and field emission properties of aluminium nitride nanowires. J. Mater. Chem., 2003, 13, 2024–2027.
http://dx.doi.org/10.1039/b303987k
12. Okada, T., Toriyama, M. and Kanzaki, S. Synthesis of aluminium nitride sintered bodies using the direct nitridation of Al compacts. J. Europ. Ceram. Soc., 2000, 20, 783–787.
http://dx.doi.org/10.1016/S0955-2219(99)00204-6
13. Selvaduray, G. and Sheet, L. Aluminium nitride: review of synthesis methods. Mater. Sci. Technol., 1993, 9, 463–473.
http://dx.doi.org/10.1179/026708393790172196
14. Haber, J. A., Gibbons, P. C. and Buhro, W. E. Morphologically selective synthesis of nanocrystalline aluminium nitride. Chem. Mater., 1998, 10, 4062–4071.
http://dx.doi.org/10.1021/cm980481+
15. Lu, Q., Hu, J., Tang, K., Qian, Y., Zhou, G., Liu, X. and Xing, J. A low temperature nitridation route for nanocrystalline AlN. Chem. Lett., 1999, 28, 1239–1240.
http://dx.doi.org/10.1246/cl.1999.1239
16. Qiu, Y. and Gao, L. Nitridation reaction of aluminium powder in flowing ammonia. J. Europ. Ceram. Soc., 2003, 23, 2015–2022.
http://dx.doi.org/10.1016/S0955-2219(03)00014-1
17. Rosenband, V. and Gany, A. Activation of combustion synthesis of aluminium nitride powder. J. Mater. Process. Technol., 2004, 147, 197–203.
http://dx.doi.org/10.1016/j.jmatprotec.2003.12.017
18. Taylor, K. M. and Lenie, C. Some properties of aluminium nitride. J. Electrochem. Soc., 1960, 107, 308–314.
http://dx.doi.org/10.1149/1.2427686
19. Radwan, M., Bahgat, M. and El-Geassy, A. A. Formation of aluminium nitride whiskers by direct nitridation. J. Europ. Ceram. Soc., 2006, 26, 2485–2488.
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.033
20. Mench, M. M., Kuo, K. K., Yeh, C. L. and Lu, Y. C. Comparison of thermal behavior of regular and ultra-fine aluminium powders made from plasma explosion process. Combust. Sci. Technol., 1998, 135, 269–292.
http://dx.doi.org/10.1080/00102209808924161
21. Ramesh, P. D. and Rao, K. J. Microwave-assisted synthesis of aluminium nitride. Advanced Mater., 1995, 7, 177–179.
http://dx.doi.org/10.1002/adma.19950070217
22. Chen, X. and Gonsalves, K. E. Synthesis and properties of an aluminium nitride/polymide nanocomposite prepared by a nonaqueous suspension process. J. Mater. Res., 1997, 12, 1274–1286.
http://dx.doi.org/10.1557/JMR.1997.0176
23. Seki, K., Xu, X., Okabe, H., Frye, J. M. and Halpern, J. B. Room-temperature growth of AlN thin films by laser ablation. Appl. Phys. Lett., 1992, 60, 2234–2236.
http://dx.doi.org/10.1063/1.107040
24. Qiu, Y. and Gao, L. Novel way to synthesize nanocrystalline aluminium nitride from coarse aluminium powder. J. Am. Ceram. Soc., 2003, 86, 1214–1216.
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03452.x
http://dx.doi.org/10.1080/10426919508935062