The rise of sea level will enhance erosion of cliffs that will be in the reach of storm waves in the distant future. We analyse the possible consequences of erosion-driven collapse of the cliff of Cap Canaille, located approximately 20 km from Marseille, France. A resulting fall of large amount of rocks (several millions m3) into the sea (or a subaerial landslide of an equal volume) may generate a local tsunami that will endanger the adjacent seaside resort Cassis. The propagation of waves, created by this hypothetic event, is simulated using the fully non-linear Boussinesq wave model FUNWAVE. The maximum elevation in Cassis may reach 3.6 m and it only weakly depends on the particular scenario of the collapse. The largest source of danger is the short arrival time (3–3.5 min) of the first wave that is also the highest one. This requires implementation of non-traditional means for building resilience of the local coastal community with respect to such events.
1. Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science, 2007, 315, 368–370.
http://dx.doi.org/10.1126/science.1135456
2. Gornitz, V. Global coastal hazards from future sea-level rise. Global Planet. Change, 1991, 89, 379–398.
http://dx.doi.org/10.1016/0921-8181(91)90118-G
3. Irish, J. L., Frey, A. E., Rosati, J. D., Olivera, F., Dunkin, L. M., Kaihatu, J. M., Ferreira, C. M. and Edge, B. L. Potential implications of global warming and barrier island degradation on future hurricane inundation, property damages, and population impacted. Ocean Coast. Manage, 2010, 53, 645–657.
http://dx.doi.org/10.1016/j.ocecoaman.2010.08.001
4. Orviku, K., Jaagus, J., Kont, A., Ratas, U. and Rivis, R. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res., 2003, 19, 364–375.
5. Emery, K. O. and Kuhn, G. G. Sea cliffs: their processes, profiles, and classification. Geol. Soc. Am. Bull., 1982, 93, 644–654.
http://dx.doi.org/10.1130/0016-7606(1982)93<644:SCTPPA>2.0.CO;2
6. Nunes, M., Ferreira, Ó., Loureiro, C. and Baily, B. Beach and cliff retreat induced by storm groups at Forte Novo, Algarve (Portugal). J. Coast. Res., 2011, Special Issue 64, 795–799.
7. Orviku, K., Tõnisson, H., Kont, A., Suuroja, S. and Anderson, A. Retreat rate of cliffs and scarps with different geological properties in various locations along the Estonian coast. J. Coast. Res., 2013, Special Issue 65, 552–557.
8. Brooks, S. M., Spencer, T. and Boreham, S. Deriving mechanisms and thresholds for cliff retreat in soft-rock cliffs under changing climates: Rapidly retreating cliffs of the Suffolk coast. UK. Geomorphology, 2012, 153-154, 48–60.
http://dx.doi.org/10.1016/j.geomorph.2012.02.007
9. Fritz, H. M., Mohammed, F. and Yoo, J. Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl. Geophys., 2009, 166, 153–175.
http://dx.doi.org/10.1007/s00024-008-0435-4
10. Hébert, H., Piatanesi, A., Heinrich, P., Schindelé, F. and Okal, E. Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophys. Res. Lett., 2002, 29, Art. No. 1484.
http://dx.doi.org/10.1029/2001GL013774
11. Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A. and Zaniboni, F. The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat. Hazards Earth Syst. Sci., 2005, 5, 763–775.
http://dx.doi.org/10.5194/nhess-5-763-2005
12. Pino, N. A., Ripepe, M. and Cimini, G. B. The Stromboli Volcano landslides of December 2002: A seismological description. Geophys. Res. Lett., 2004, 31, L02605.
http://dx.doi.org/10.1029/2003GL018385
13. Keating, B. H. and McGuire, W. J. Island edifice failures and associated tsunami hazards. Pure Appl. Geophys., 2000, 157, 899–955.
http://dx.doi.org/10.1007/s000240050011
14. Walder, J. S., Watts, P., Sorensen, O. E. and Janssen, K. Tsunamis generated by subaerial mass flows. J. Geophys. Res. – Solid Earth, 2003, 108(B5), Art. No. 2236.
http://dx.doi.org/10.1029/2001JB000707
15. Ward, S. N. Landslide tsunami J. Geophys. Res. – Solid Earth, 2001, 106(B6), 11201–11215.
http://dx.doi.org/10.1029/2000JB900450
16. Pelinovsky, E., Kharif, C., Riabov, I. and Francius, M. Modelling of tsunami propagation in the vicinity of the French coast of the Mediterranean. Nat. Hazards, 2002, 25, 135–159.
http://dx.doi.org/10.1023/A:1013721313222
17. Recorbet, F., Rochette, P., Braucher, R., Bourlès, D., Benedetti, L., Hantz, D. and Finkel, R. C. Evidence for active retreat of a coastal cliff between 3.5 and 12 ka in Cassis (South East France). Geomorphology, 2010, 115, 1–10.
http://dx.doi.org/10.1016/j.geomorph.2009.04.023
18. Heinrich, P., Piatanesi, A., Okal, E. and Hebert, H. Near-field modelling of the July 17, 1998 tsunami in Papua New Guinea, Geophys. Res. Lett., 2000, 27, 3037–3040.
http://dx.doi.org/10.1029/2000GL011497
19. Khvostova O. E., Averbukh E. L. and Kurkin A. A. Cape Canaille cliff falling: hypothetic tsunami consequences estimation. In 24th International Tsunami Symposium, Novosibirsk, 2009, 86.
20. Khvostova, O. E., Averbukh, E. L. and Kurkin, A. A. Analysis of nonseismic tsunami scenarios of the French coast of the Mediterranean Sea. Trans. Nizhny Novgorod State Technical University n.a. R. E. Alekseev, Mechanics of Fluids and Gases, 2010, 2(81), 49–56 (in Russian).
21. Wei, G. and Kirby, J. T. 1995. Time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coast. Ocean Eng., 1995, 121, 251–261.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
22. Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech., 1995, 294, 71–92.
http://dx.doi.org/10.1017/S0022112095002813
23. Kirby, J. T. Boussinesq models and applications to nearshore wave propagation, surf-zone processes and wave-induced currents. In Advances in Coastal Modeling (Lakhan, V. C., ed.). Elsevier, Amsterdam, 2003, 1–41.
http://dx.doi.org/10.1016/S0422-9894(03)80118-6
24. Kennedy, A. B., Chen, Q., Kirby, J. T. and Dalrymple, R. A. Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J. Waterw. Port Coast. Ocean Eng., 2000, 126, 39–47.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
25. Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. and Chawla, A. Boussinesq modeling of wave transformation, breaking and runup, II: 2D. J. Waterw. Port Coast. Ocean Eng., 2000, 126, 48–56.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
26. Choi, J., Lim, C. H., Lee, J. I. and Yoon, S. B. Evolution of waves and currents over a submerged laboratory shoal. Coast. Eng., 2009, 56, 297–312.
http://dx.doi.org/10.1016/j.coastaleng.2008.09.002
27. Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B. and Dalrymple, R. A. Funwave. Fully Nonlinear Boussinesq Wave Model. Documentation and User’s Manual. Center for Applied Coastal Research. Research Report NO CACR-98-06. 1998.
28. Bender, C. J. and Dean, R. G. Wave transformation by two-dimensional bathymetric anomalies with sloped transitions. Coast. Eng., 2003, 50, 61–84.
http://dx.doi.org/10.1016/j.coastaleng.2003.08.002
29. D’Alessandro, F. and Tomasicchio, G. R. The BCI criterion for the initiation of breaking process in Boussinesq-type equations wave models. Coast. Eng., 2008, 55, 1174–1184.
http://dx.doi.org/10.1016/j.coastaleng.2008.05.002
30. Ioualalen, M. Sensitivity tests on relations between tsunami signal and seismic rupture characteristics: The 26 December 2004 Indian Ocean event case study. Environ. Modell. Softw., 2009, 24, 1354–1362.
http://dx.doi.org/10.1016/j.envsoft.2007.07.007
31. Ioualalen, M., Pelletier, B., Watts, P. and Regnier, M. Numerical modeling of the 26 November 1999 Vanuatu tsunami. J. Geophys. Res. Oceans, 2006, 111, C06030.
32. Waythomas, C., Watts, P., Shi, F. and Kirby, J. T. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quatern. Sci. Rev., 2009, 28, 1006–1009.
http://dx.doi.org/10.1016/j.quascirev.2009.02.019
33. Dong, G., Wang, G., Ma, X. and Ma, Y. Harbor resonance induced by subaerial landslide-generated impact waves. Ocean Eng., 2010, 37, 927–934.
http://dx.doi.org/10.1016/j.oceaneng.2010.03.005
34. Ward S. N. and Asphaug E. Asteroid impact tsunami: a probabilistic hazard assessment. Icarus, 2000, 145, 64–78.
http://dx.doi.org/10.1006/icar.1999.6336
35. Ward, S. N. and Asphaug E. Impact tsunami – Eltanin. Deep Sea Res. II, 2002, 49, 1073–1079.
http://dx.doi.org/10.1016/S0967-0645(01)00147-3
36. Kharif, C. and Pelinovsky, E. Asteroid impact tsunamis. C.R. Physique, 2005, 6, 361–366.
http://dx.doi.org/10.1016/j.crhy.2004.12.016
37. Watts, P. and Waythomas, C. F. Theoretical analysis of tsunami generation by pyroclastic flows. J. Geophys. Res. – Solid Earth, 2003, 108(B12), Art. No. 2563.
http://dx.doi.org/10.1029/2002JB002265
http://dx.doi.org/10.1093/gji/ggs133