ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Tool life evaluation of cutting materials in hard turning of AISI H11; pp. 143–151
PDF | doi: 10.3176/eng.2013.2.04

Authors
Brahim Fnides, Smail Boutabba, Mohamed Fnides, Hamdi Aouici, Athmane Yallese
Abstract

The aim of this experimental study is to evaluate the tool life of each cutting material used in dry hard turning of AISI H11, treated at 50 HRC. This steel is intended for hot work, is free from tungsten on CrMoV basis, insensitive to temperature changes and has a high wear resistance. It is employed for the manufacture of the moulds and inserts, module matrices of car doors and helicopter rotor blades. The tests of straight turning were carried out using the following cutting materials: carbides (H13A and GC3015), ceramics (mixed CC650 and reinforced CC670) and cermets (CT5015 and GC1525). Experimental results enable us to study the influence of machining time on flank wear VB of these cutting materials and to determine their lifespan for this cutting regime (depth of cut ap = 0.15 mm, feed rate f = 0.08 mm/rev and cutting speed Vc = 120 m/min). It arises that mixed ceramic (insert CC650) is more resistant to wear than cutting materials. Its tool life is 49 min and consequently, it is the most powerful.

References

 1. SANDVIK Coromant. Catalogue Général, Outils de coupe Sandvik Coromant, Tournage – Fraisage – Perçage – Alésage – Attachements, 2009.

 2. Fnides, B., Yallese, M. A. and Aouici, H. Comportement à l’usure des céramiques de coupe (Al2O3 + TiC et Al2O3 + SiC) en tournage des pièces trempées. Algerian J. Advanced Mater., 2008, 5, 121–124.

 3. Fnides, B., Yallese, M. A., Mabrouki, T. and Rigal, J.-F. Surface roughness model in turning hardened hot work steel using mixed ceramic tool. Mechanika (Kaunas, Lithuania), 2009, No. 3(77), 68–73.

 4. Sharma, P. and Bhambri, K. Multi-response optimization by experimental investigation of machining parameters in CNC turning by Taguchi based grey relational analysis. Int. J. Eng. Res. Appl., 2012, 2, 1594–1602.

 5. Uvaraja, V. C. and Natarajan, N. Optimization on friction and wear process parameters using Taguchi technique. Int. J. Eng. Technol., 2012, 2, 694–699.

 6. Senthil Kumar, A., Raja Durai, A. and Sornakumar, T. Machinability of hardened steel using alumina based ceramic cutting tools. Int. J. Refract. Met. Hard Mater., 2003, 21, 109–117.
http://dx.doi.org/10.1016/S0263-4368(03)00004-0

 7. Yallese, M. A., Chaoui, K., Zeghib, N., Boulanouar, L. and Rigal, J.-F. Hard machining of hardened bearing steel using cubic boron nitride tool. J. Mater. Process. Technol., 2009, 209, 1092–1104.
http://dx.doi.org/10.1016/j.jmatprotec.2008.03.014

 8. Dogra, M., Sharma, V. S., Sachdeva, A., Suri, N. M. and Dureja, J. S. Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review. Int. J. Precision Eng. Manufact., 2010, 11, 341–358.
http://dx.doi.org/10.1007/s12541-010-0040-1

 9. Fnides, B., Berkani, S., Yallese, M. A., Boutabba, S., Rigal, J.-F. and Daffri, S. Analysis of technological parameters through response surface methodology in machining hardened X38CrMoV5-1 using whisker ceramic tool (Al2O3 + SiC). Estonian J. Eng., 2012, 18, 26–41.
http://dx.doi.org/10.3176/eng.2012.1.03

10. Fnides, B., Yallese, M. A., Mabrouki, T. and Rigal, J.-F. Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana, 2011, 36, 109–123.
http://dx.doi.org/10.1007/s12046-011-0007-7

Back to Issue

Back issues