The stability domain of discrete-time systems is investigated via reflection coefficients of characteristic polynomials of the system. Stable polytopes in the coefficients space of characteristic polynomials are defined starting from the sufficient stability condition in the polynomial reflection coefficients space using different reflection vector sets. The volumes of these stable polytopes are calculated via the triangulation method.
1. Ackermann, J. Robust Control. Systems with Uncertain Physical Parameters. Springer Verlag, London, 1993.
2. Jury, E. I. Robustness of discrete systems: a review. In Prepr. 11th IFAC World Congress. Tallinn, 1990, vol. 5, 184–189.
3. Batra, P. On necessary conditions for real robust Schur-stability. IEEE Trans. Autom. Control, 2003, 48, 259–261.
http://dx.doi.org/10.1109/TAC.2002.808471
4. Greiner, R. Necessary conditions for Schur-stability of interval polynomials. IEEE Trans. Autom. Control, 2004, 49, 740–744.
http://dx.doi.org/10.1109/TAC.2004.825963
5. Henrion, D., Peaucelle, D., Arzelier, D. and Šebek, M. Ellipsoidal approximation of the stability domain of a polynomial. IEEE Trans. Autom. Control, 2003, 48, 2255–2259.
http://dx.doi.org/10.1109/TAC.2003.820161
6. Calafiore, G. and El Ghaoui, L. Ellipsoidal bounds for uncertain linear equations and dynamical systems. Automatica, 2004, 40, 773–787.
http://dx.doi.org/10.1016/j.automatica.2004.01.001
7. Barmish, B. R. and Kang, H. I. A survey of extreme point results for robustness of control systems. Automatica, 1993, 29, 13–35.
http://dx.doi.org/10.1016/0005-1098(93)90172-P
8. Jetto, L. Strong stabilization over polytopes. IEEE Trans. Autom. Control, 1999, 44, 1211–1216.
http://dx.doi.org/10.1109/9.769376
9. Nurges, Ü. New stability conditions via reflection coefficients of polynomials. IEEE Trans. Autom. Control, 2005, 50, 1354–1360.
http://dx.doi.org/10.1109/TAC.2005.854614
10. Henrion, D., Sebek, M. and Kucera, V. Positive polynomials and robust stabilization with fixed-order controllers. IEEE Trans. Autom. Control, 2003, 48, 1178–1186.
http://dx.doi.org/10.1109/TAC.2003.814103
11. Khatibi, H., Karimi, A. and Longchamp, R. Fixed-order controller design for polytopic systems using LMIs. IEEE Trans. Autom. Control, 2008, 53, 428–434.
http://dx.doi.org/10.1109/TAC.2007.914301
12. Nurges, Ü. Reflection coefficients of polynomials and stable polytopes. IEEE Trans. Autom. Control, 2009, 54, 1314–1318.
http://dx.doi.org/10.1109/TAC.2009.2015537
13. Kraus, F., Anderson, B. D. O. and Mansour, M. Robust Schur polynomial stability and Kharitonov’s theorem. Int. J. Control, 1988, 47, 1213–1225.
http://dx.doi.org/10.1080/00207178808906089
14. Nurges, Ü. Robust pole assignment via reflection coefficients of polynomials. Automatica, 2006, 42, 1223–1230.
http://dx.doi.org/10.1016/j.automatica.2006.03.007
15. Diaz-Barrero, J. L. and Egozcue, J. J. Characterization of polynomials using reflection coefficients. Appl. Math. E-Notes, 2004, 4, 114–121.
16. Kay, S. M. Modern Spectral Estimation. Prentice Hall, New Jersey, 1988.
17. Oppenheim, A. M. and Schaffer, R. W. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, 1989.
18. Petrikevich, Ya. I. Randomized methods of stabilization of the discrete linear systems. Automation Remote Control, 2008, 69, 1911–1921.
http://dx.doi.org/10.1134/S0005117908110076
19. Shcherbakov, P. and Dabbene, F. On random generation of stable polynomials. In Proc. IEEE Multi-Conference on Systems and Control. Saint Petersburg, Russia, 2009, 406–411.
20. Picinbono, B. and Benidir, M. Some properties of lattice autoregressive filters. IEEE Trans. Acoust. Speech Signal Process., 1986, 34, 342–349.
http://dx.doi.org/10.1109/TASSP.1986.1164816
21. Büeler, B., Enge, A. and Fukuda, K. Exact volume computation for polytopes: a practical study. In Polytopes – Combinatorics and Computation (Kalai, G. and Ziegler, G. M., eds), Basel, Birkhäuser, 2000, 131–154.
http://dx.doi.org/10.1007/978-3-0348-8438-9_6
22. Bartlett, A. C., Hollot, C. V. and Huang, L. Root location of an entire polytope of polynomials: it suffices to check the edges. Math. Control, Signals System, 1988, 1, 61–71.
http://dx.doi.org/10.1007/BF02551236
http://dx.doi.org/10.1145/235815.235821