This paper reports the results of field experiments performed at an offshore oceanographic platform in the Black Sea during spring and fall seasons 2005–2011. Observations of the air-sea interaction were made using direct and remote sensing methods in the coastal zone where the interaction is complex and still poorly understood. A specialized research platform, managed by the Marine Hydrophysical Institute (MHI), is placed on the shelf slope approximately 600 m offshore the Crimea coast, Ukraine. The water depth at the site is about 30 m. The experiment program included conventional turbulence measurements with the eddy-covariance method as well as remote radio-polarimetric measurements with a newly developed instrument. The study was concentrated on the air-sea interaction during episodes of weak wind in the atmosphere and upwelling events in the ocean. Analysis of the collected data confirmed significant dependence of the surface drag coefficient on the air-sea temperature difference under weak wind conditions. However, this analysis also demonstrated a new air–sea interaction regime, which is characterized by large quasi-periodic (periods about 3.5 h) turbulence oscillations developing initially in the atmosphere and later (after about 10–12 h) in the sub-surface water layer. The analysis of radio-polarimetric measurements provided the characteristics of the gravity-capillary wave field during these events.
1. Sun, J. L., Vandemark, D., Mahrt, L., Vickers, D., Crawford, T. and Vogel, C. Momentum transfer over the coastal zone. J. Geophys. Res., 2001, 106(D12), 12437–12448.
http://dx.doi.org/10.1029/2000JD900696
2. Ozsoy, E., Di Iorio, D., Gregg, M. C. and Backhaus, J. O. Mixing in the Bosphorus Strait and the Black Sea continental shelf: observations and a model of the dense water outflow. J. Marine Syst., 2001, 31, 99–135.
http://dx.doi.org/10.1016/S0924-7963(01)00049-5
4. Kara, A. B., Metzger, E. J. and Bourassa, M. A. Ocean current and wave effects on wind stress drag coefficient over the global ocean. Geophys. Res. Lett., 2007, 34, L01604.
http://dx.doi.org/10.1029/2006GL027849
5. Kara, A. B., Wallcraft, A. J., Barron, C. N., Hurlburt, H. E. and Bourassa, M. A. Accuracy of 10 m winds from satellites and NWP products near land-sea boundaries. J. Geophys. Res., 2008, 113, C10020.
http://dx.doi.org/10.1029/2007JC004516
6. Grenier, H., Le Treut, H. and Fichefet, T. Ocean-atmosphere interactions and climate drift in a coupled general circulation model. Clim. Dyn., 2000, 16, 701–717.
http://dx.doi.org/10.1007/s003820000073
7. Smedman, A.-S., Hogström, U. and Bergström, H. The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. J. Geophys. Res., 1997, 102(C9), 21049–21059.
http://dx.doi.org/10.1029/97JC01070
9. Repina, I. A., Chukharev, A. M., Goryachkin, Y. N., Komarova, N. Y. and Pospelov, M. N. Evolution of air-sea interaction parameters during the temperature front passage: The measurements on an oceanographic platform. Atmos. Res., 2009, 94, 74–80.
http://dx.doi.org/10.1016/j.atmosres.2008.11.007
10. Pospelov, M. N., De Biasio, F., Goryachkin, Y. N., Komarova, N. Y., Kuzmin, A. V., Pampaloni, P., Repina, I. A., Sadovsky, I. N. and Zecchetto, S. Air–sea interaction in a coastal zone: the results of the CAPMOS’05 experiment on an oceanographic platform in the Black Sea. Atmos. Res., 2009, 94, 61–73.
http://dx.doi.org/10.1016/j.atmosres.2009.02.002
11. Soloviev, Yu. P. and Ivanov, V. A. Preliminary results of measurements of atmospheric turbulence over the sea. Phys. Oceanogr., 2007, 17, 154–172.
http://dx.doi.org/10.1007/s11110-007-0013-9
13. Grachev, A. A. Free convention frequency spectra of atmospheric turbulence over the sea. Bound.-Lay. Meteor., 1994, 69, 27–42.
http://dx.doi.org/10.1007/BF00713293
16. Samodurov, A. S., Dykman, V. Z., Barabash, V. A., Efremov, O. I., Zubov, A. G., Pavlenko, O. I. and Chukharev, A. M. “Sigma-1” measuring complex for the investigation of small-scale characteristics of hydrophysical fields in the upper layer of the sea. Phys. Oceanogr., 2005, 15, 311–322.
http://dx.doi.org/10.1007/s11110-006-0005-1
17. Chukharev, A. M. Field measurements of turbulent kinetic energy dissipation in sea surface layer. In Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources. Collected scientific papers No. 20 (Ivanov, V. A. et al., eds). NAS of Ukraine, MHI, IGS, OD IBSS. Sevastopol, 2010, 21, 124–135 (in Russian).
18. Massman, W. J. and Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricult. Forest Meteorol., 2002, 113, 121–144.
http://dx.doi.org/10.1016/S0168-1923(02)00105-3
19. Foken, T. Micrometeorology. Springer-Verlag, Berlin, Heidelberg, 2008.
20. Sadovsky, I. N., Kuzmin, A. V. and Pospelov, M. N. Wind-wave spectrum parameters investigation based on remote radio-polarimetric measurements. Issledovaniya Zemli iz Kosmosa, 2009, 2, 1–8 (in Russian).
21. Trokhimovski, Y. G. Model of the radiothermal emission of a disturbed sea surface. Earth Observ. Remote Sens., 1998, 15, 47–61.
22. Kuzmin, A., Pospelov, M. and Trokhimovskii, Yu. Sea surface parameters retrieval by passive microwave polarimetry. In Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere (Pampaloni, P. and Paloscia, S., eds). VSP Intern. Science Publishers, Zeist, The Netherlands, 2000, 3–11.
24. Garratt, J. R. Review of drag coefficients over oceans and continents. Mon. Weather Rev., 1977, 105, 915–929.
http://dx.doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
25. Large, W. G. and Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 1981, 11, 324–336.
http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
26. Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. and Edson, J. B. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Climate, 2003, 16, 571–591.
http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
27. Mahrt, L., Vickers, D., Frederickson, P., Davidson, K. and Smedman, A. S. Sea-surface aerodynamic roughness. J. Geophys. Res., 2003, 108(C6), 3171.
http://dx.doi.org/10.1029/2002JC001383
28. Kudryavtsev, V. N. and Makin, V. K. Aerodynamic roughness of the sea surface at high winds. Bound.-Layer. Meteorol., 2007, 125, 289–303.
http://dx.doi.org/10.1007/s10546-007-9184-7
29. Zilitinkevich, S. S., Hunt, J. C. R., Grachev, A. A., Esau, I. N., Lalas, D. P., Akylas, E., Tombrou, M., Fairall, C. W., Fernando, H. J. S., Baklanov, A. and Joffre, S. M. The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Meteorol. Soc., 2006, 132, 1423–1456.
http://dx.doi.org/10.1256/qj.05.79
30. Esau, I. An improved parameterization of turbulent exchange coefficients accounting for the non-local effect of large eddies. Ann. Geophys., 2004, 22, 3353–3362.
http://dx.doi.org/10.5194/angeo-22-3353-2004
31. Zilitinkevich, S. S. and Esau, I. Resistance and heat transfer laws for stable and neutral planetary boundary layers: old theory, advanced and re-evaluated. Quart. J. Roy. Meteorol. Soc., 2005, 131, 1863–1892.
http://dx.doi.org/10.1256/qj.04.143
32. Peña, A., Gryning, S.-E. and Hasager, Ch. B. Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer. Meteorol., 2008, 129, 479–495.
http://dx.doi.org/10.1007/s10546-008-9323-9
33. Sozzi, R., Rossi, F. and Georgiadis, Th. Parameter estimation of surface layer turbulence from wind speed vertical profile. Environ. Model. Software, 2001, 16, 73–85.
http://dx.doi.org/10.1016/S1364-8152(00)00066-9
35. Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. and Saltzman, E. S. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 2004, 31, L18306.
http://dx.doi.org/10.1029/2004GL019460
37. McNider, R. T., Shi, X., Friedman, M. and England, D. E. On the predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 1995, 52, 1602–1614.
http://dx.doi.org/10.1175/1520-0469(1995)052<1602:POTSAB>2.0.CO;2
38. Apel, J. R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 1994, 99, 16269–16291.
http://dx.doi.org/10.1029/94JC00846
39. Elfouhaily, T., Chapron, B., Katsaros, K. and Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 1997, 102, 15781–15796.
http://dx.doi.org/10.1029/97JC00467
http://dx.doi.org/10.1029/97JC00190