Nonlinear interaction of long unidirectional waves is studied numerically in the framework of nonlinear shallow water theory in a basin of constant depth. The interaction of two initially separated unidirectional waves occurs only when the waves (transformed into the shock waves) overtake each other. It is demonstrated that the interaction of two large-amplitude wave crests results in the formation of one shock wave of triangular shape, which is qualitatively similar to the outcome of the nonlinear interaction of two weak-amplitude waves. The formation of shock waves from initially negative disturbances (wave troughs) is accompanied by the generation of reflected waves of negative polarity. These waves additionally influence the process of interaction. The interaction of waves of opposite polarities is possible only when the leading wave is negative.
1. Whitham, G. B. Linear and Nonlinear Waves. Wiley, New York, 1974.
2. Drazin, P. G. and Johnson, R. S. Solitons: an Introduction. Cambridge University Press, 1989.
3. Engelbrecht, J. Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, 1997.
4. Murawski, K. Analytical and Numerical Methods for Wave Propagation in Fluid Media. World Scientific, 2002.
http://dx.doi.org/10.1142/9789812776631
5. Zabusky, N. and Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15, 240–243.
http://dx.doi.org/10.1103/PhysRevLett.15.240
6. Zakharov, V. E. Kinetic equation for solitons. Sov. Phys. JETP, 1971, 33, 538–541.
7. Salupere, A., Maugin, G. A., Engelbrecht, J. and Kalda, J. On the KdV soliton formation and discrete spectral analysis. Wave Motion, 1996, 123, 49–66.
http://dx.doi.org/10.1016/0165-2125(95)00040-2
8. Osborne, A. R., Serio, M., Bergamasco, L. and Cavaleri, L. Solitons, cnoidal waves and nonlinear interactions in shallow-water ocean surface waves. Physica D, 1998, 123, 64–81.
http://dx.doi.org/10.1016/S0167-2789(98)00112-2
9. Kit, E., Shemer, L., Pelinovsky, E., Talipova, T., Eitan, O. and Jiao, H. Nonlinear wave group evolution in shallow water. J. Waterw. Port Coast. Ocean Eng., 2000, 126, 221–228.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:5(221)
10. Grimshaw, R., Pelinovsky, D., Pelinovsky, E. and Talipova, T. Wave group dynamics in weakly nonlinear long-wave models. Physica D, 2001, 159, 235–257.
http://dx.doi.org/10.1016/S0167-2789(01)00333-5
11. Salupere, A., Peterson, P. and Engelbrecht, J. Long-time behavior of soliton ensembles. Math. Comp. Simul., 2003, 62, 137–147.
http://dx.doi.org/10.1016/S0378-4754(02)00178-7
13. Soomere, T. Solitons interactions. In Encyclopedia of Complexity and Systems Science (Meyers, R. A., ed.). Springer, 2009, vol. 9, 8479–8504.
14. Sergeeva, A., Pelinovsky, E. and Talipova, T. Nonlinear random wave field in shallow water: variable Korteweg–de Vries framework. Nat. Hazards Earth Syst. Sci., 2011, 11, 323–330.
http://dx.doi.org/10.5194/nhess-11-323-2011
15. Fokas, A. S. and Liu, Q. M. Asymptotic integrability of water waves. Phys. Rev. Lett., 1996, 77, 2347–2351.
http://dx.doi.org/10.1103/PhysRevLett.77.2347
16. Marchant, T. R. and Smyth, N. F. Soliton interaction for the extended Korteweg-de Vries equation. J. Appl. Math., 1996, 56, 157–176.
17. Massel, S. R. Hydrodynamics of the Coastal Zone. Elsevier, Amsterdam, 1989.
18. Caputo, J.-G. and Stepanyants, Y. A. Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlin. Process. Geophys., 2003, 10, 407–424.
http://dx.doi.org/10.5194/npg-10-407-2003
19. Tsuji, Y., Yanuma, T., Murata, I. and Fujiwara, C. Tsunami ascending in rivers as an undular bore. Natural Hazards, 1991, 4, 257–266.
http://dx.doi.org/10.1007/BF00162791
20. Zahibo, N., Pelinovsky, E., Talipova, T., Kozelkov, A. and Kurkin, A. Analytical and numerical study of nonlinear effects at tsunami modelling. Appl. Math. Comp., 2006, 174, 795–809.
http://dx.doi.org/10.1016/j.amc.2005.05.014
21. Didenkulova, I. I., Zahibo, N., Kurkin, A. A., Levin, B. V., Pelinovsky, E. N. and Soomere, T. Runup of nonlinearly deformed waves on a coast. Dokl. Earth Sci., 2006, 411, 1241–1243.
http://dx.doi.org/10.1134/S1028334X06080186
22. Didenkulova, I. I., Zahibo, N., Kurkin, A. A. and Pelinovsky, E. N. Steepness and spectrum of a nonlinearly deformed wave on shallow waters. Izvestiya Atmos. Ocean. Phys., 2006, 42, 773–776.
http://dx.doi.org/10.1134/S0001433806060119
23. Didenkulova, I., Pelinovsky, E., Soomere, T. and Zahibo, N. Runup of nonlinear asymmetric waves on a plane beach. In Tsunami and Nonlinear Waves (Kundu, A., ed.). Springer, 2007, 175–190.
http://dx.doi.org/10.1007/978-3-540-71256-5_8
24. Zahibo, N., Didenkulova, I., Kurkin, A. and Pelinovsky, E. Steepness and spectrum of nonlinear deformed shallow water wave. Ocean Eng., 2008, 35, 47–52.
http://dx.doi.org/10.1016/j.oceaneng.2007.07.001
25. Pelinovsky, E. N. and Rodin, A. A. Nonlinear deformation of a large-amplitude wave on shallow water. Doklady Physics, 2011, 56, 305–308.
http://dx.doi.org/10.1134/S1028335811050119
26. Rudenko, O. V. and Soluyan, S. I. Theoretical Foundations of Nonlinear Acoustics. Consultants Bureau, New York, 1977.
27. Gurbatov, S., Malakhov, A. and Saichev, A. Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester, 1991.
28. Rudenko, O. V., Gurbatov, S. N. and Saichev, A. I. Waves and Structures in Nonlinear Media Without Dispersion. Applications to Nonlinear Acoustics. Nauka, Moscow, 2008 (in Russian).
29. LeVeque, R. J. Finite-Volume Methods for Hyperbolic Problems. Cambridge Univ. Press, Cambridge, 2004.
30. Engelbrekht, Yu., Fridman, V. and Pelinovsky, E. Nonlinear Evolution Equations. Longman, New York, 1988.
31. Volyak, K. I., Gorshkov, A. S. and Rudenko, O. V. Nonlinear waves in the ocean. Selected works. Vestn. Mosk. Univ. Ser. Fiz., Astron., 1975, 1 (in Russian).