ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Characterization of the temporal variability of Estonian mean precipitation series; pp. 332–344
PDF | doi: 10.3176/eng.2011.4.04

Authors
Piia Post, Olavi Kärner
Abstract

Values of mean precipitation have been estimated from time series obtained using
15- and 30-day totals of the daily precipitation, measured at 40 stations throughout Estonia over a 45-year period (1961–2005). Six series were studied using different spatially averaged scales. The temporal variability of each series was fitted using an autoregressive and integrated moving-average (ARIMA) model of type IMA(0,1,1). The fitted model was non-stationary but allowed a formal decomposition into a stationary white noise and a non-stationary random walk component. The standard deviation of the stationary component was then used to define a 95% range of variability for the precipitation that divides the distribution into three regimes, a central and two outlying parts. We herein present simple statistics for each of these three regimes.

References

  1. Fünfzigjährige Mittelwerte aus den meteorologische Beobachtungen 1866-1915 für Dorpat. Viiekümneaastased keskmised meteoroloogilistest vaatlustest 1866-1915 a.a. Tartus. Tartu Ülikooli Ilmade Observatoorium, Tartu, 1919.

  2. Kirde, K. Andmeid Eesti kliimast. Tartu Ülikooli Meteoroloogia Observatooriumi Teaduslikud Väljaanded, 1939, No. 3.

  3. Jaagus, J. Uusi andmeid Eesti kliimast. Publ. Inst. Geogr. Univ. Tartuensis, 1999, 85, 28–38.

  4. Jaagus, J. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor. Appl. Climatol., 2006, 83, 77–88.
http://dx.doi.org/10.1007/s00704-005-0161-0

  5. Tammets, T. Distribution of extreme wet and dry days in Estonia in last 50 years. Proc. Estonian Acad. Sci. Eng., 2007, 13, 252–259.

  6. Tammets, T. Estimation of extreme wet and dry days through moving totals in precipitation time series and some possibilities for their consideration in agrometeorological studies. Agron. Res., 2010, (Special issue), 433–438.

  7. Merilain, M. and Post, P. Suvised ekstreemsajud – kas ainult viimaste aastate fenomen? Publ. Geophys. Univ. Tartuensis, 2006, 50,144–154.

  8. Mätlik, O. and Post, P. Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961–2005. Estonian J. Eng., 2008, 14, 195–208.

  9. Päädam, K. and Post, P. Temporal variability of precipitation extremes in Estonia 1961–2008. Oceanologia, 2011, 53(1-TI), 245–257.

10. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, United Kingdom and New York, USA, 2007.

11. Peterson, T. C., Folland, C., Gruza, G., Hogg, W., Mokssit, A. and Plummer, N. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. World Meteorol. Org. Rep., WCDMP-47, WMO-TD 2001, 1071, Geneva, Switzerland.

12. Frei, C. and Schär, C. Detection of trends in rare events: theory and application to heavy precipitation in the alpine region. J. Clim., 2001, 14, 1568–1584.
http://dx.doi.org/10.1175/1520-0442(2001)014<1568:DPOTIR>2.0.CO;2

13. Klein Tank, A. M. G. and Können, G. P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 2003, 16, 3665–3680.
http://dx.doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2

14. Zolina, O., Simmer, C., Kapala, A. and. Gulev, S. K On the robustness of the estimates of centennial-scale variability in heavy precipitation from station data over Europe. Geophys. Res. Lett., 2005, 32, L 14707.

15. Zolina, O., Simmer, C., Gulev, S. and Kollet, S. Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 2010, 37, L 06704.

16. Schmidli, J. and Frei, C. Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Internat. J. Climatol., 2005, 25, 753–771.
http://dx.doi.org/10.1002/joc.1179

17. Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P. F., Hennessy, K. J., Suppiah, R., Page, C. M., Wibig, J., Fortuniak, K. et al. Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 1999, 42, 243–285.
http://dx.doi.org/10.1023/A:1005432803188

18. Zolina, O., Simmer, C., Belyaev, K., Kapala, A. and Gulev, S. K. Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeor., 2009, 10, 701–716.
http://dx.doi.org/10.1175/2008JHM1055.1

19. Tammets, T. and Kallis, A. (eds). Eesti ilma riskid. Estonian Meteorological and Hydrological Institute, Tallinn, 2008.

20. Box, J. E. P., Jenkins, G. and Reinsel, G. C. Time Series Analysis, Forecasting and Control (3rd ed.). Prentice Hall, Upper Saddle River, NJ, 1994.

21. Kärner, O. ARIMA representation for daily solar irradiance and surface air temperature time series. J. Atmosph. Solar-Terrestrial Phys., 2009, 71, 841–847.
http://dx.doi.org/10.1016/j.jastp.2009.03.018

22. Kärner, O. and de Freitas, C. Modelling long-term variability in daily air temperature time series for Southern Hemisphere stations. Environm. Modeling Assessment, 2011, 16.
http://dx.doi.org/10.1007/s10666-011-9269-z

Back to Issue

Back issues