Radiosonde observations of temperature, relative humidity and wind properties are compared at two neighbouring stations – Tallinn-Harku in Estonia and Jokioinen in Finland – with the aim to optimize radiosonde network and measurement times. The comparison is carried out for the period of 1993–2009 when both stations used similar equipment. Midnight and noon soundings are compared separately. It is concluded that the profiles of the temperature and wind speed at these two stations are similar, but those of the relative humidity differ significantly, showing coefficient of correlation over 0.7 only near the tropopause. Wind roses are similar in summer, but somewhat different in winter, especially in the stratosphere during the daytime.
1. Grant, A. N., Brönnimannh, S., Ewen, T. and Nagurny, A. A new look at radiosonde data prior to 1958. J. Climate, 2009, 22, 3232–3247.
http://dx.doi.org/10.1175/2008JCLI2539.1
2. Durre, I., Vose, R. S. and Wuertz, D. B. Overview of the Integrated Global Radiosonde Archive. J. Climate, 2006, 19, 53–68.
http://dx.doi.org/10.1175/JCLI3594.1
3. Durre, I. and Yin, X. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc., 2008, 89, 1257–1261.
http://dx.doi.org/10.1175/2008BAMS2603.1
4. Douglas, M. W. and Murillo, J. The pan-American climate studies sounding network. Bull. Am. Meteorol. Soc., 2008, 89, 1709–1725.
http://dx.doi.org/10.1175/2008BAMS2521.1
5. McCarthy, M. P. Spatial sampling requirements for monitoring upper-air climate change with radiosondes. Int. J. Climatol., 2008, 28, 985–993.
http://dx.doi.org/10.1002/joc.1611
6. Keevallik, S. and Rajasalu, R. Winds on the 500 hPa isobaric level over Estonia (1953–1998). Phys. Chem. Earth B, 2001, 26, 425–429.
7. Rõõm, R. and Jaagus, J. Expert assessment of optimization of Estonian meteorological network. Tech. Report, Institute of Physics, University of Tartu, 2008.
8. Titchner, H. A., Thorne, P. W., McCarthy, M. P., Tett, S. F. B., Haimberger, L. and Parker, D. E. Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J. Climate, 2009, 22, 465–485.
http://dx.doi.org/10.1175/2008JCLI2419.1
9. Sherwood, S. C., Lanzante, J. R. and Meyer, C. L. Radiosonde daytime biases and late-20th century warming. Science, 2005, 309, 1556–1559.
http://dx.doi.org/10.1126/science.1115640
10. McCarthy, M. P., Thorne, P. W. and Titchner, H. A. An analysis of tropospheric humidity trends from radiosondes. J. Climate, 2009, 22, 5820–5838.
http://dx.doi.org/10.1175/2009JCLI2879.1
11. Solomon, S., Rosenlof, K., Portmann, R., Daniel, J., Davis, S., Sanford, T. and Plattner, G.-K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 2010, 327, 1219–1223.
http://dx.doi.org/10.1126/science.1182488
12. Steinbrecht, W., Claude, H., Schönenborn, F., Leiterer, U., Dier, H. and Lanziger, E. Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J. Atmosph. Oceanic Technol., 2008, 25, 909–927.
http://dx.doi.org/10.1175/2007JTECHA999.1
13. Holton, J. R. An Introduction to Dynamic Meteorology, 4th ed. Elsevier Academic Press, 2004.
14. Keevallik, S. Changes in spring weather conditions and atmospheric circulation in Estonia (1955–95). Int. J. Climatol., 2003, 23, 263–270.
http://dx.doi.org/10.1002/joc.875