Numerically estimated wave properties and the associated closure depth along the eastern Baltic Sea coast from the Sambian (Samland) Peninsula up to Pärnu Bay in the Gulf of Riga are compared against the existing data about accumulation and erosion. Typical values of the closure depth are about 5–6 m (maximum 6.58 m) at the open Baltic Sea coast, 3–4 m in the Gulf of Riga and 2–2.5 m in semi-sheltered smaller bays. The areas of intense accumulation or erosion (especially the areas of their high variability) generally coincide with the sections, hosting high wave intensity, except for a few locations, dominated by anthropogenic impact. It is shown that the longshore variations in wave intensity (or closure depth) can be used to identify the location of major accumulation and erosion domains. The sections that host the largest change in the wave height along the coast reveal erosion or accumulation features, depending on the predominant wave approach direction.
2. Soomere, T. Extremes and decadal variations of the northern Baltic Sea wave conditions. In Extreme Ocean Waves (Pelinovsky, E. and Kharif, C., eds). Springer, 2008, 139–157.
http://dx.doi.org/10.1007/978-1-4020-8314-3_8
4. Labuz, T. A. The West Pomerania coastal dunes – alert state of their development. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2009, 160, 113–122.
http://dx.doi.org/10.1127/1860-1804/2009/0160-0113
10. Leont¢yev, I. O. Budget of sediments and forecast of long-term coastal changes. Oceanology, 2008, 48, 428–437.
11. Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R. and Tõnisson, H. Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuar. Coast. Shelf Sci., 2008, 80, 31–41.
http://dx.doi.org/10.1016/j.ecss.2008.07.007
17. Räämet, A. and Soomere, T. The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian J. Earth Sci., 2010, 59, 100–113.
http://dx.doi.org/10.3176/earth.2010.1.08
18. Soomere, T. and Räämet, A. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci., 2011, 7, 141–150.
http://dx.doi.org/10.5194/os-7-141-2011
19. Tuomi, L., Kahma, K. K. and Pettersson, H. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res., 2011, 16, 1–22.
20. Soomere, T., Kask, A., Kask, J. and Healy, T. R. Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia. J. Marine Syst., 2008, 74, Suppl., S133–S146.
http://dx.doi.org/10.1016/j.jmarsys.2008.03.024
24. Kont, A., Jaagus, J. and Aunap, R. Climate change scenarios and the effect of sea-level rise for Estonia. Global Planet. Change, 2003, 36, 1–15.
http://dx.doi.org/10.1016/S0921-8181(02)00149-2
25. Pruszak, Z. and Zawadzka, E. Potential implications of sea-level rise for Poland. J. Coast. Res., 2008, 24, 410–422.
http://dx.doi.org/10.2112/07A-0014.1
26. Tõnisson, H., Orviku, K., Jaagus, J., Suursaar, Ü., Kont, A. and Rivis, R. Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J. Coast. Res., 2008, 24, 602–614.
http://dx.doi.org/10.2112/06-0631.1
28. Hanson, H. and Larson, M. Implications of extreme waves and water levels in the southern Baltic Sea. J. Hydraul. Res., 2009, 46, 292–302.
http://dx.doi.org/10.1080/00221686.2008.9521962
29. Zhang, W. Y., Harff, J., Schneider, R. and Wu, C. Y. Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dynam., 2010, 60, 1085–1114.
http://dx.doi.org/10.1007/s10236-010-0311-5
31. Soomere, T. and Healy, T. R. On the dynamics of “almost equilibrium” beaches in semi-sheltered bays along the southern coast of the Gulf of Finland. In The Baltic Sea Basin (Harff, J., Björck, S. and Hoth, P., eds). Springer, Heidelberg, 2011, 255–279.
http://dx.doi.org/10.1007/978-3-642-17220-5_13
32. Suursaar, Ü. Waves, currents and sea level variations along the Letipea-Sillamäe coastal section of the southern Gulf of Finland. Oceanologia, 2010, 52, 391–416.
http://dx.doi.org/10.5697/oc.52-3.391
37. Houston, J. R. Simplified Dean’s method for beach-fill design. J. Waterw. Port. C. Div., 1996, 122, 143–146.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1996)122:3(143)
38. Birkemeier, W. A. Field data on seaward limit of profile change. J. Waterw. Port. C. Div., 1985, 111, 598–602.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1985)111:3(598)
40. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P. A. E. M. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 1994.
http://dx.doi.org/10.1017/CBO9780511628955
42. Lehmann, A., Getzlaff, K. and Harlass, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res., 2011, 46, 185–196.
http://dx.doi.org/10.3354/cr00876
45. Hooke, J. M. Magnitude and distribution of rates of river bank. J. Hydrol., 1979, 42, 39–62.
http://dx.doi.org/10.1016/0022-1694(79)90005-2
46. Hudson, H. R. A field technique to directly measure river bank erosion. Canadian J. Earth Sci., 1982, 19, 381–383.
http://dx.doi.org/10.1139/e82-030
47. Räämet, A., Soomere, T. and Zaitseva-Pärnaste, I. Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 182–192.
http://dx.doi.org/10.3176/proc.2010.2.18
48. Kamphuis, J. W. Introduction to Coastal Engineering and Management. World Scientific, Singapore, New Jersey, 2000.
49. Jaagus, J. Long-term changes in frequencies of wind directions on the western coast of Estonia. Publications, Institute of Ecology at Tallinn University, 2009, 11, 11–24.