ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Development of a method for optical monitoring of creatinine in the spent dialysate; pp. 140–150
PDF | doi: 10.3176/eng.2011.2.04

Authors
Ruth Tomson, Fredrik Uhlin, Jana Holmar, Kai Lauri, Merike Luman, Ivo Fridolin
Abstract
The aim of the study was to develop a method suitable for the estimation of the amount of creatinine, removed during dialysis through UV-absorbance. Sixteen uremic patients, seven females and nine males, on chronic thrice-weekly hemodialysis were included in the study. Double-beam spectrophotometer was used for the determination of UV-absorbance in the collected spent dialysate samples. Due to differences in independent variables, two multi-wavelength models (m1 and m2) were developed using stepwise regression, utilizing creatinine values from the laboratory as the dependent parameter. The coefficient of determination, R2 was 0.8690 for the first and 0.9103 for the second model. The systematic error, estimated as BIAS, was zero for both models compared to the creatinine values from the laboratory. The standard errors were 10.06 µmol/l and 15.24 µmol/l for m1 and m2, respectively. The average reduction ratio (RR) from creatinine blood values was 59.8 ± 5.4% (N = 50), average RR from m1 was 63.7 ± 7.3% (N = 50) and average RR from m2 was 64.8 ± 6.4% (N = 48). In summary, the amount of creatinine removed as well as the reduction ratio of creatinine during dialysis can be estimated with UV-absorbance technique.
References

  1. Yavuz, A., Tetta, C., Ersoy, F. F., D’intini, V., Ratanarat, R., De Cal, M., Bonello, M., Bordoni, V., Salvatori, G., Andrikos, E., Yakupoglu, G., Levin, N. W. and Ronco, C. Uremic toxins: a new focus on an old subject. Semin. Dial., 2005, 18, 203–211.
doi:10.1111/j.1525-139X.2005.18313.x

  2. Basile, C., Vernaglione, L., Lomonte, C., Bellizzi, V., Libutti, P., Teutonico, A. and Di Iorio, B. Comparison of alternative methods for scaling dialysis dose. Nephrol. Dial. Transplant., 2010, 25, 1232–1239.
doi:10.1093/ndt/gfp603

  3. Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P., Clark, W., Cohen, G., De Deyn, P. P., Deppisch, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int., 2003, 63, 1934–1943.
doi:10.1046/j.1523-1755.2003.00924.x

  4. Eloot, S., Torremans, A., De Smet, R., Marescau, B., De Wachter, D., De Deyn, P. P., Lameire, N., Verdonck, P. and Vanholder, R. Kinetic behaviour of urea is different from that of other water-soluble compounds: the case of the guanidino compounds. Kidney Int., 2005, 67, 1566–1575.
doi:10.1111/j.1523-1755.2005.00238.x

  5. Desmeules, S., Lévesque, R., Jaussent, I., Leray-Moragues, H., Chalabi, L. and Canaud, B. Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients. Nephrol. Dial. Transplant., 2004, 19, 1182–1189.
doi:10.1093/ndt/gfh016

  6. Terrier, N., Senécal, L., Dupuy, A. M., Jaussent, I., Delcourt, C., Leray, H., Rafaelsen, S., Bosc, J. Y., Maurice, F., Canaud, B. and Cristol, J. P. Association between novel indices of malnutrition-inflammation complex syndrome and cardiovascular disease in hemodialysis patients. Hemodial. Int., 2005, 9, 159–168.
doi:10.1111/j.1492-7535.2005.01127.x

  7. Koncki, R. Analytical aspects of hemodialysis. Trends in Anal. Chem., 2008, 27, 304–314.

  8. Stosovic, M., Stanojevic, M., Simic-Ogrizovic, S., Jovanovic, D. and Djukanovic, L. The predictive value of anthropometric parameters on mortality in haemodialysis patients. Nephrol. Dial. Transplant., 2010, 25, 1–8.

  9. Artiss, J. D., Karcher, R. E., Collins, S. L. and Zak, B. Application and evaluation of a new cold-stable kinetic Jaffe reagent to the Hitachi 747 for the determination of serum creatinine. Microchem. J., 2000, 65, 277–282.
doi:10.1016/S0026-265X(00)00125-9

10. Uhlin, F., Fridolin, I., Lindberg, L.-G. and Magnusson, M. Estimating total urea removal and protein catabolic rate by monitoring UV absorbance in spent dialysate. Nephrol. Dial. Transplant., 2005, 20, 2458–2464.
doi:10.1093/ndt/gfi026

11. Umimoto, K., Kanaya, Y., Kawanishi, H. and Kawai, N. Measuring of uremic substances in dialysate by visible ultraviolet spectroscopy. In Proc. IFMBE World Congress. Munich, 2009, 25, 42–45.

12. Castellarnau, A., Werner, M., Günthner, R. and Jakob, M. Real-time Kt/V determination by ultraviolet absorbance in spent dialysate: technique validation. Kidney Int., 2010, 78, 920–925.
doi:10.1038/ki.2010.216

13. Fridolin, I., Jerotskaja, J., Lauri, K., Uhlin, F. and Luman, M. A new optical method for measur­ing creatinine concentration during dialysis. IFMBE Proc., 2010, 29, 379–382.
doi:10.1007/978-3-642-13039-7_95

14. Fridolin, I. and Lindberg, L.-G. On-line monitoring of solutes in dialysate using wavelength-dependent absorption of ultraviolet radiation. Med. Biol. Eng. Comput., 2003, 41, 263–270.
doi:10.1007/BF02348430

15. Bland, J. and Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1986, 327, 307–310.
doi:10.1016/S0140-6736(86)90837-8

16. Lauri, K., Tanner, R., Jerotskaja, J., Luman, M. and Fridolin, I. A HPLC study of uremic fluids related to optical dialysis adequacy monitoring. Int. J. Art. Org., 2010, 33, 96–104.

17. Lauri, K., Arund, J., Tanner, R., Jerotskaja, J., Luman, M. and Fridolin, I. Behaviour of uremic toxins and UV absorbance in respect to low and high flux dialyzers. Estonian J. Eng., 2010, 16, 95–106.
doi:10.3176/eng.2010.1.09
Back to Issue

Back issues