1. Zhong, T. and Hu, H. Formability of weft-knitted fabrics on hemisphere. AUTEX Res. J., 2007, 8, 245–251.
2. Gommers, B., Verpoest, I. and Van Houtte, P. Modelling the elasticproperties of knitted-fabric-reinforced composites. Composites Sci. Technol., 1996, 56, 685–694.
doi:10.1016/0266-3538(96)00053-X
3. Ramakrishna, S.and Hull, D. Energy absorption capability of epoxy composite tubes with knitted carbon fibre fabric reinforcement. Composites Sci. Technol., 1993, 49, 349–356.
doi:10.1016/0266-3538(93)90066-P
4 Ramakrishna, S. Characterization and modeling of the tensile properties of plain weft-knit fabric-reinforced composites. Composites Sci. Technol., 1997, 57, 1–22.
doi:10.1016/S0266-3538(96)00098-X
5. Zhangyu, F. Z., Yanmo, C. and Hairu, L. Effects of pre-stretching on the tensile properties of knitted glass fiber fabric reinforced polypropylene composite. J. Thermoplastic CompositeMater., 2006, 19, 399–411.
doi:10.1177/0892705706059744
6. De Araújo, M., Fangueiro, R. and Hong, H. Modeling and simulation of the mechanical behavior of welf-knitted fabrics for technical applications. Part 3. AUTEX Res. J., 2004, 4, 25–32.
7. Shi, Y. and Jiang, Y. Realistic rendering of knitwear. J. Information Computing Science, 2007, 2, 153–160.
8. Peirce, F. T. Geometrical principles applicable to the design of functional fabrics. J. Text. Inst., 1947, 17, 123.
9. Dalidovitch, A. S. Basics of the Knitting Theory. Goslegprom, Moscow, 1949 (in Russian).
10. Leaf, G. A. and Glaskin, A. The geometry of plain knitted loop. J. Textile Inst., 1955, 25, 587.
11. Meißner, M. and Eberhardt, B. The art of knitted fabrics, realistic & physically based modeling of knitted patterns. Computer Graphics Forum, 1998, 17, 355–362.
doi:10.1111/1467-8659.00282
12. Kawabata, S. Nonlinear mechanics of woven and knitted materials. In Textile Structural Composites (Chou, T. W. and Ko, F. K., eds). Elsevier, 1989.
13. Savci, S., Curiskis, J. I. and Pailthorpe, M. T. A study of the deformation of weft-knit preforms for advanced composite structures, Part II: The resultant composite. Composites Sci. Technol., 2000, 60, 1943–1951.
doi:10.1016/S0266-3538(00)00078-6
14. Kelay, M. S., Bader, D. L. and Reed, P. E. Mechanical deformation mechanisms in knitted fabric composites. J. Thermoplastic Composite Mater., 1997, 10, 76–84.
15. Kregers, A. F. and Teters, G. A. Structural model of deformation of anisotropic three-dimensionally reinforced composite.Mech. Composite Mater., 1982, 18, 10–17.
doi:10.1007/BF00605085
16. Hamada, H., Ramakrishna, S. and Huang, Z. Knitted fabric composites. In 3-D Textile Reinforcements in Composite Materials (Miravete, A., ed.). Woodhead Publ., 2000, 180–216.
17. Saville, B. P. Physical Testing of Textiles. CRT Press LLC, USA, 2000.
18. de Carvalho, L. H., Cavalcante, J. M. F. and d’Almeida, J. R. M. Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites. Polymer-Plastics Technol. Eng., 2006, 45, 791–797.
doi:10.1080/03602550600611933
19. de Araujo, M., Fangueiro, R. and Hong, H. Modelling and simulation of the mechanical behaviour of weft-knitted fabrics for technical applications. AUTEX Res. J., 2003, 3, 166–172.
20. Gordon, S. and Hsieh, Y.-L. (eds). Cotton: Science and Technology. Woodhead Publ., USA, 2007.
21. Verpoest, I. and Lomov, S. V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis. Composites Sci. Technol., 2005, 65, 2563–2574.
doi:10.1016/j.compscitech.2005.05.031
22. Ramakrishna, S., Huang, Z. M., Teoh, S. H., Tay, A. A. O. and Chew, C. L. Application of the model of Leaf and Glaskin to estimating the 3D elastic properties of knitted-fabric-reinforced composites. J. Textile Inst., 2000, 91, 132–150.
doi:10.1080/00405000008659494
doi:10.1002/pc.20184