1. Parmar, R. S. Welding Processes and Technology. Khanna Publishers, New Delhi, 1992.
2. Houldcroft, P. T. Submerged Arc Welding, 2nd ed. Abington Publishing, Cambridge, England, 1989.
3. Brien, R. L. Welding Handbook, vol. 2, 2nd ed. American Welding Society, 1978.
4. Vishvanath, P. S. Submerged arc welding fluxes. Indian Welding J., 1982, 15, 1–12.
5. Chandel, R. S. Mathematical modeling of melting rates for submerged arc welding. Welding J., 1987, 65, 32s–39s.
6. Schwemmer, D. D. and Williamson, D. L. The relationship of weld penetration to the weld flux. Welding J., 1979, 58, 155s–161s.
7. Indacochea, J. E. and Olsen, D. L. Relationship of weld metal microstructure and penetration to weld metal oxygen control. Mater. Energy Syst., 1983, 5, 139–145.
doi:10.1007/BF02833367
8. Davis, M. L. E. and Baily, N. Properties of submerged arc fluxes – a fundamental study. Metal Constr., 1982, 64, 207–209.
9. Murugan, N. and Gunaraj, V. Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes. J. Mater. Process. Technol., 2005, 168, 478–487.
doi:10.1016/j.jmatprotec.2005.03.001
10. Datta, S., Bandhopadhayaay, A. and Pal, P. K. Modeling and optimization of features of bead geometry including percentage dilution in submerged arc welding using mixture of fresh and fused flux. Int. J. Adv. Manufact. Technol., 2008, 36, 1080–1090.
doi:10.1007/s00170-006-0917-4
11. Mercado, A. M., Hirata, V. M. and Lopez, M. Influence of the chemical composition of flux on the microstructure and tensile properties of submerged-arc welds. J. Mater. Process. Technol., 2005, 169, 346–351.
doi:10.1016/j.jmatprotec.2005.03.035