ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Process parameter optimization of pulsed electric current sintering of recycled WC-8Co powder; pp. 255–265
PDF | doi: 10.3176/eng.2009.4.02

Authors
Mehmet Erkin Cura, Juha Lagerbom, Riina Ritasalo, Jesse Syrén, Juho Lotta, Outi Söderberg, Tapio Ritvonen, Erja Turunen, Simo-Pekka Hannula
Abstract

The WC-8Co powder, crushed and milled from recycled hard metals, was compacted with the pulsed electric current sintering method. The smallest particles were of the size about 0.4 mm and agglomerates 1–7 mm. Effect of the sintering temperature and heating rate were studied. Hard metal was sintered to a density of 98.3% at 1613 K within 3.5 min under 16 MPa pressure. Density and hardness were highest for the slowest heating regime, 98.1% and HV1 1981 kg/mm2, respectively. Heating speed 100 K/min was used for fabrication of fully densed samples, sintered under pressure of 100 MPa, at 1593 K in 3 min.

References

  1. Miracle, D. B. Metal matrix composites – from science to technological significance. Composites Sci. Technol., 2005, 65, 2526–2540.
doi:10.1016/j.compscitech.2005.05.027

  2. Hannula, S.-P., Turunen, E., Koskinen, J. and Söderberg, O. Processing of hybrid materials for components with improved life-time. Curr. Appl. Phys., 2009, 9, S160–S166.
doi:10.1016/j.cap.2009.01.033.

  3. Fang, Z. Z., Wang, X., Ryu, T. G., Hwang, K. S. and Sohn, H. Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int. J. Refract. Met. Hard Mat., 2009, 27, 288–299.
doi:10.1016/j.ijrmhm.2008.07.011

  4. Byrne, C., Dornfeld, D. and Denkena, B. Advancing cutting technology. CIRP Annals – Manufact. Technol., 2003, 52, 483–507.

  5. Xiong, Y. H., Lau, K., Zhou, X. Y. and Schoenung, J. M. A streamlined life cycle assessment on the fabrication of WC-Co cermets. J. Cleaner Prod., 2008, 16, 1118–1126.
doi:10.1016/j.jclepro.2007.05.007

  6. Orru, R., Licheri, R., Locci, A. M., Cincotti, A. and Cao, C. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R, 2008, 63, 127–287.
doi:10.1016/j.mser.2008.09.003

  7. Zhao, S., Song, X., Zhang, J. and Liu, X. Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC–Co alloy. Mater. Sci. Eng. A, 2008, 473, 323–329.
doi:10.1016/j.msea.2007.04.094

  8. Huang, S. G., Vanmeensel, K., Li, L., Van der Biest, O. and Vleugels, J. Influence of starting powder on the microstructure of WC–Co hardmetals obtained by spark plasma sintering. Mater. Sci. Eng. A, 2008, 475, 87–91.
doi:10.1016/j.msea.2006.12.145

  9. Liu, W., Song, X., Zhang, J., Yin, F. and Zhang, G. A novel route to prepare ultrafine-grained WC–Co cemented carbides. J. Alloys Compos., 2008, 458, 366–371.
doi:10.1016/j.jallcom.2007.03.107

10. Shi, X. L., Shao, G. Q., Duan, X. L., Yuan, R. Zh. and Lin, H. H. Mechanical properties, phases and microstructure of ultrafine hardmetals prepared by WC–6.29Co nanocrystalline composite powder. Mater. Sci. Eng. A, 2005, 392, 335–339.
doi:10.1016/j.msea.2004.09.043

11. Zhang, F., Shen, J. and Sun, J. The effect of phosphorus additions on densification, grain growth and properties of nanocrystalline WC–Co composites. J. Alloys Compos., 2004, 385, 96–103.
doi:10.1016/j.jallcom.2004.04.110

12. Zhang, F., Shen, J. and Sun, J. Processing and properties of carbon nanotubes-nano-WC-Co composites. Mater. Sci. Eng. A, 2004, 381, 86–91.
doi:10.1016/j.msea.2004.03.061

13. Wang, X. Q., Xie, Y. F., Guo, H. L., Van der Biest, O. and Vleugels, J. Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering. Rare Metals, 2006, 25, 246–252.
doi:10.1016/S1001-0521(06)60048-X

14. Xie, Y. F., Wang, Y. Q., Chen, L. D., Li, Y. D. and Guo, H. L. Preparation of superfine-cemented carbide by spark plasma sintering. J. Wuhan Univ. Technol., 2006, 21, 42–45.
doi:10.1007/BF02861467

15. Cha, S. I., Hong, S. H. and Kim, B. K. Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders. Mater. Sci. Eng. A, 2003, 351, 31−38.
doi:10.1016/S0921-5093(02)00605-6

16. Zhang, F., Shen, J. and Sun, J. Processing and properties of carbon nanotubes-nano-WC-Co composites. Mater. Sci. Eng. A, 2004, 381, 86–91.
doi:10.1016/j.msea.2004.03.061

17. Huang, S. G., Li, L., Vanmeensel, K., Van der Biest, O. and Vleugels, J. VC, Cr3C2 and NbC doped WC–Co cemented carbides prepared by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater., 2007, 25, 417–422.
doi:10.1016/j.ijrmhm.2006.11.003

18. Zhao, J., Holland, T., Unuvar, C. and Munir, Z. A. Sparking plasma of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater., 2009, 27, 130–139.
doi:10.1016/j.ijrmhm.2008.06.004
Back to Issue

Back issues