ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Spatial distribution of marine benthic habitats in the Estonian coastal sea, northeastern Baltic Sea; pp. 165–191
PDF | doi: 10.3176/eco.2013.3.01

Authors
Georg Martin, Jonne Kotta, Tiia Möller, Kristjan Herkül
Abstract

In this study six pilot marine areas were mapped in the Estonian coastal sea with the aim of assessing the spatial distribution of shallow-water benthic habitats and analysing how different these habitats are in terms of species composition and dominance structure of macrophytes and benthic invertebrates. Moderately exposed soft-bottom habitats prevailed in the study areas whereas sheltered hard-bottom habitats were the rarest. Habitats that included no habitat-forming species tended to be less diverse compared to those having any of such characteristic species. There were few species that were found in one habitat only. Although the physical environments of the habitats were not necessarily different, the majority of habitats were statistically different either in terms of species composition or dominance structure of benthic macrophyte and invertebrate species. This allows us to conclude that the studied habitats are ‘real’, i.e. the supported communities are most likely not found under similar abiotic environmental conditions without the habitat-forming species.

References

Araújo, M. B. & New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47.

 

http://dx.doi.org/10.1016/j.tree.2006.09.010

Bendtsen, J., Gustafsson, K. E., Söderkvist, J. & Hansen, J. L. S. 2009. Ventilation of bottom water in the North Sea–Baltic Sea transition zone. Journal of Marine Systems, 75, 138–149.
http://dx.doi.org/10.1016/j.jmarsys.2008.08.006

Clarke, K. R. & Gorley, R. N. 2006. PRIMER v6: User Manual⁄Tutorial. PRIMER-E, Plymouth, UK.

Elith, J., Leathwick, J. R. & Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x

ESRI. 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA, USA.

HELCOM. 2008. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. http://www.helcom.fi/groups/monas/CombineManual/en_GB/main/ (accessed 16.06.2012).

Herkül, K., Kotta, J., Kotta, I. & Orav-Kotta, H. 2006. Effects of physical disturbance, isolation and key macrozoobenthic species on community development, recolonisation and sedimentation processes. Oceanologia, 48S, 267–282.

Herkül, K., Kotta, J., Kutser, T. & Vahtmäe, E. 2013. Relating remotely sensed optical variability to marine benthic biodiversity. PLOS ONE, 8, e55624.
http://dx.doi.org/10.1371/journal.pone.0055624

Isæus, M. 2004. Factors Structuring Fucus Communities at Open and Complex Coastlines in the Baltic Sea. PhD Thesis, Department of Botany, Stockholm University, Sweden.

Kendrick, G. A., Hegge, B. J., Wyllie, A., Davidson, A. & Lord, D. A. 2000. Changes in seagrass cover on Success and Parmelia Banks, Western Australia between 1965 and 1995. Estuarine, Coastal and Shelf Science, 50, 341–353.
http://dx.doi.org/10.1006/ecss.1999.0569

Kotta, J. & Orav, H. 2001. Role of benthic macroalgae in regulating macrozoobenthic assemblages in the Väinameri (north-eastern Baltic Sea). Annales Zoologici Fennici, 38, 163–171.

Kotta, J., Paalme, T., Püss, T., Herkül, K. & Kotta, I. 2008. Contribution of scale-dependent environmental variability on the biomass patterns of drift algae and associated invertebrates in the Gulf of Riga, northern Baltic Sea. Journal of Marine Systems, 74, Supplement 1, S116–S123.
http://dx.doi.org/10.1016/j.jmarsys.2008.03.030

Kotta, J., Lauringson, V., Kaasik, A. & Kotta, I. 2012. Defining the coastal water quality in Estonia based on benthic invertebrate communities. Estonian Journal of Ecology, 61, 86–105.
http://dx.doi.org/10.3176/eco.2012.2.02

Kotta, J., Kutser, T., Teeveer, K., Vahtmäe, E. & Pärnoja, M. 2013. Predicting species cover of marine macrophyte and invertebrate species combining hyperspectral remote sensing, machine learning and regression techniques. PLOS ONE, 8, e63946.
http://dx.doi.org/10.1371/journal.pone.0063946

Kovtun, A., Torn, K. & Kotta, J. 2009. Long-term changes in a northern Baltic macrophyte community. Estonian Journal of Ecology, 58, 270–285.
http://dx.doi.org/10.3176/eco.2009.4.03

Martin, G. 2000. Phytobenthic Communities of the Gulf of Riga and the Inner Sea of the West-Estonian Archipelago. Dissertationes biologicae Universitatis Tartuensis, 64.

Nikolopoulos, A. & Isæus, M. 2008. Wave exposure calculations for the Estonian coast. AquaBiota Water Research. http://www.aquabiota.se/PublikationerSvEng/pdf/­EstExp_ABWR_Report200802.pdf (accessed 01.09.2012).

Olli, K., Clarke, A., Danielsson, Å., Aigars, J., Conley, D. J. & Tamminen, T. 2008. Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems, 73, 284–299.
http://dx.doi.org/10.1016/j.jmarsys.2007.04.009

The R Foundation for Statistical Computing. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 29.05.2013).

Rioja-Nieto, R. & Sheppard, C. 2008. Effects of management strategies on the landscape ecology of a Marine Protected Area. Ocean & Coastal Management, 51, 397–404.
http://dx.doi.org/10.1016/j.ocecoaman.2008.01.009

Stevens, T. & Connolly, R. M. 2004. Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biological Conservation, 119, 351–362.
http://dx.doi.org/10.1016/j.biocon.2003.12.001

 

Back to Issue

Back issues