eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology
Variability of riparian soil diatom communities and their potential as indicators of anthropogenic disturbances; pp. 168–184
PDF | doi: 10.3176/eco.2014.3.04

Piret Vacht, Liisa Puusepp, Tiiu Koff, Triin Reitalu

Riparian soils are affected by both natural and anthropogenic disturbances occurring in the water bodies and on the catchment area. These riparian areas are also rich in microhabitats and therefore host various soil biota, including diatoms. Diatoms are known for their bioindication abilities in water and could potentially be used in that context in the riparian zone. Therefore the possibility of riparian soil diatoms acting as indicators of both terrestrial and aquatic disturbances is worth discussion. We analysed diatom community structure and their variability between different study areas and sites. We also quantified diatom species diversity and richness and evenness of the riparian topsoils. Possible effects of various anthropogenic disturbances on diatom communities, alkaline air pollution, and the effects of mining waters pumped into the area were studied in north-eastern Estonia. These results were compared with results from an area with low human influence in south-eastern Estonia. Additionally, we evaluated the potential of diatoms as indicators of various anthropogenic disturbance levels and a water contamination gradient based on sulphate concentrations. Community parameters, including species richness, diversity, and evenness, indicated some differences between the studied communities both when the separate study sites and distinguishable anthropogenic disturbance levels were compared. Diatom assemblages also showed moderate variability between the study sites, which could be influenced by variable moisture conditions, variable organic matter content, and the trophic level of the water body. Despite the variable levels of human influence the two compared areas shared about 51.4% of the species. Our findings show that the diatom community composition of riparian soils could potentially indicate anthropogenic disturbance levels, especially through the abundance, absence, or presence of specific species (e.g. Hantzschia amphioxys, Fragilaria zeilleri var. elliptica, Pinnularia lata).


Berard, A., Rimet, F., Capowiez, Y., and Leboulanger, C. 2004. Procedures for determining the pesticide sensitivity of indigenous soil algae: a possible bioindicator of soil contamination? Archives of Environmental Contamination and Toxicology, 46(1), 24–31.

Beyene, A., Awoke, A., and Triest, L. 2014. Validation of a quantitative method for estimating the indicator power of diatoms for ecoregional river water quality assessment. Ecological Indicators, 37, 58–66.

Camburn, K. E. 1982. Subaerial diatom communities in Eastern Kentucky. Transactions of the American Microscopical Society, 101, 375–387.

de la Rey, P. A., Taylor, J. C., Laas, A., van Rensburg, L., and Vosloo, A. 2004. Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA, 30, 325–332.

Dickman, M. D. 1998. Benthic marine diatom deformities associated with contaminated sediments in Hong Kong. Environmental International, 24, 749–759.

Dorokhova, M. F. 2007. Diatoms as indicators of soil conditions in oil production regions. Oceanological and Hydrobiological Studies, 36, 129–135.

Eloranta, P. and Soininen, J. 2002. Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology, 14, 1–7.

Estonian Environment Agency. 2014. (accessed 18.03.2014).

Fierer, N., Grandy, A. S., Six, J., and Paul, E. A. 2009. Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41, 2249–2256.

Grobbelaar, J. U. 1983. Availability to algae of N ja P absorbed on suspended solids in turbid waters of the Amazon River. Archiv für Hydrobiologie, 96(3), 302–316.

Gudmundsdottir, R., Palsson, S., Hannesdottir, E. R., Olafsson, J. S., Gislason, G. M., and Moss, B. 2013. Diatoms as indicators: the influences of experimental nitrogen enrichment on diatom assemblages in sub-Arctic streams. Ecological Indicators, 32, 74–81.

Havlicek, E. 2012. Soil biodiversity and bioindication: from complex thinking to simple acting. European Journal of Soil Biology, 49, 80–84.

Heck, K. Jr., Belle, G., and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56, 1459–1461.

Heger, T. J., Straub, F., and Mitchell, E. A. D. 2012. Impact of farming practices on soil diatoms and testate amoebae: a pilot study in the DOK-trial at Therwil, Switzerland. European Journal of Soil Biology, 49, 31–36.

Heiri, O., Lotter, A. F., and Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

Ito, Y. and Horiuchi, S. 1991. Distribution of living terrestrial diatoms and its application to the paleoenvironmental analyses. Diatom, 6, 23–44.

Ivan, O. and Vasiliu, A. 2009. Oribatid mites (Acari, Oribatida) – bioindicators of forest soil pollution with heavy metals and fluorine. Annals of Forest Research, 52, 11–18.

Ivask, M., Truu, J., Kuu, A., Truu, M., and Leito, A. 2007. Earthworm communities of flooded grasslands in Matsalu, Estonia. European Journal of Soil Biology, 43, 71–76.

Kabirov, R. R. and Gaisina, L. A. 2009. Parameters of the productivity of soil algae in terrestrial ecosystems. Eurasian Soil Science, 42, 1374–1379.

Kobayasi, H. and Mayama, S. 1982. Most pollution-tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japanese Journal of Phycology, 30, 188–196.

Kont, A., Kull, O., Rooma, I., Makarenko, D., and Zobel, M. 1994. The kame field ecosystems studied on landscape transects. In The Influence of Natural and Anthropogenic Factors
on the Development of Landscapes. Results of a Comprehensive Study in NE Estonia (Punning, J.-M., ed.), pp. 161–189. Ökoloogia Instituut, Eesti Teaduste Akadeemia, Tallinn.

Kont, A., Kull, O., Rooma, I., and Zobel, M. 2007. Maastikuprofiili meetodil uuritud mõhnastike ökosüsteemid. In Eesti Geograafia Seltsi Aastaraamat (Koff, T. and Raukas, A., eds), pp. 29–74. Tallinna Ülikooli Kirjastus, Tallinn.

Krammer, K. and Lange-Bertalot, H. 1988–1991. Bacillariophyceae. In Süsswasserflora von Mittel­europa, Vol. 2(1; 3–4) (Ettl, H., Gerlof, J., Heynig, H., and Mollenhauer, D., eds). Gustav Fischer Verlag, Stuttgart–Jena.

Krammer, K. and Lange-Bertalot, H. 1999–2004. Bacillariophyceae. In Süsswasserflora von Mittel­europa, Vol. 2(2–4) (Ettl, H., Gerlof, J., Heynig, H., and Mollenhauer, D., eds). Spektrum Akademischer Verlag, Heidelberg–Berlin.

Lange-Bertalot, H. and Metzeltin, D. 1996. Indicators of Oligotrophy. Iconographia Diatomologica (Lange-Bertalot, H., ed.). Koeltz Scientific Books, Frankfurt am Main.

Lange-Bertalot, H., Bak, M., Witkowski, A., and Tagliaventi, N. 2011. Diatoms of Europe. Diatoms of the European Inland Water and Comparable Habitats. Eunotia and some related genera (Lange-Bertalot, H., ed.). A.R.G. Gantner Verlag K.G, Rugell.

Levkov, Z., Blanco, S., Krstic, S., Nakov, T., and Ector, L. 2007. Ecology of benthic diatoms from Lake Macro Prespa (Macedonia). Algological Studies, 124(1), 71–83.

Marzecová, A., Mikomägi, A., Koff, T., and Martma, T. 2011. Sedimentary geochemical response to human impact on Lake Nõmmejärv, Estonia. Estonian Journal of Ecology, 60, 54–69.

Moravcová, A., Beyens, L., and Van de Vijver, B. 2009. Diatom communities in soils influenced by the wandering albatross (Diomedea exulans). Polar Biology, 33, 241–255.

Oksanen, J. F., Blanchet, G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. 2013. vegan: Community Ecology Package. R package version 2.0-10. (accessed 10.05.2014).

Poulíčková, A., Bergová, K., Hnilica, R., and Neustupa, J. 2013. Epibryic diatoms from ombro­trophic mires: diversity, gradients and indicating options. Nova Hedwigia, 96, 351–365.

Punning, J.-M., Ilomets, M., Karofeld, E., Koff, T., Kozloca, M., Laugaste, R., et al. 1989. Tehnogeensed muutused biogeokeemilises aineringes. In Kurtna järvestiku looduslik seisund ja areng II (Ilomets, M., ed.), pp. 14–28. Valgus, Tallinn.

Punning, J.-M., Varvas, M., Tann, R., Alliksaar, T., and Boyle, J. F. 1997. Human impact on the history of Lake Nõmmejärv, NE Estonia: a geochemical and palaeobotanical study. The Holocene, 7, 91–99.

Punning, J.-M., Boyle, J. F., Terasmaa, J., Vaasma, T., and Mikomägi, A. 2007. Changes in lake-sediment structure and composition caused by human impact: repeated studies of Lake Martiska, Estonia. The Holocene, 17, 145–151.

Rooma, I. 1987. Kurtna mõhnastiku mullastikust. In Kurtna järvestiku looduslik seisund ja areng I (Ilomets, M., ed.), pp. 37–40. Valgus, Tallinn.

Round, F. E. and Bukhtiyarova, L. 1996. Four new genera based on Achnanthes (Achnanthidium) together with a re-definition of Achnanthidium. Diatom Research, 11, 345–361.

Souffreau, C., Vanormelingen, P., Verleyen, E., Sabbe, K., and Vyverman, W. 2010. Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia, 49, 309–324.

Souffreau, C., Vanormelingen, P., Van de Vijver, B., Isheva, T., Verleyen, E., Sabbe, K., and Vyverman, W. 2013. Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist, 164, 101–115.

Starks, T. L., Shubert, L. E., and Trainor, F. R. 1981. Ecology of soil algae: a review. Phycologia, 20, 65–80.

Terasmaa, J., Vaasma, T., Puusepp, L., Vandel, E., Vainu, M., and Mikomägi, A. 2013. Kurtna järvedes toimuvad muutused seoses intensiivsete veebilansi ja hüdrokeemia muutustega. In Eesti XII ökoloogiakonverents “Eesti teadus- ja arendustegevuse konkurentsivõime”. Tartu.

Ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

Vacht, P. 2012. Soolatamise mõju maanteeäärsete muldade faunale ja diatomeefloorale. Master’s thesis. Tallinn University, Tallinn.

Vacht, P. 2014. Maanteeäärsete muldade fauna ja diatomeefloora. In Väikesed pildid Eestist. Noorgeograafide sügissümpoosioni artiklite kogumik. Eesti Geograafia Seltsi Noorteklubi (EGSN) ja European Geography Association for Students (Anderson, A., ed.). Tallinna Ülikooli Kirjastus, Tallinn. (Accepted).

van Kerckvoorde, A., Trappeniers, K., Nijs, I., and Beyens, L. 2000. Terrestrial soil diatom assemblages from different vegetation types in Zackenberg (Northeast Greenland). Polar Biology, 23, 392–400.

Van de Vijver, B., Ledeganck, P., and Beyens, L. 2002. Soil diatom communities from Ile de la Possession. Polar Biology, 25, 721–729.

Van de Vijver, B., Gremmen, N., and Smith, V. 2008. Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar Biology, 31, 795–808.

Vesiloo, P. 1987. Põlevkivikaevandamise edasisest mõjust Kurtna järvestiku veerežiimile. In Kurtna järvestiku looduslik seisund ja areng I (Ilomets, M., ed.), pp. 85–90. Valgus, Tallinn.

Weilhoefer, C. L. and Pan, Y. 2007. Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands, 27, 668–682.[668:RBDAEV]2.0.CO;2

Zancan, S., Trevisan, R., and Paoletti, M. G. 2006. Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems and Environment, 112, 1–12.

Back to Issue

Back issues