eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology
In situ production of charophyte communities under reduced light conditions in a brackish-water ecosystem; pp. 28–38
PDF | doi: 10.3176/eco.2014.1.03

Anastasiia Kovtun-Kante, Kaire Torn, Jonne Kotta

There is a lot of circumstantial evidence that light conditions affect the growth and distribution of charophyte communities. In general, limited light availability causes plants to reduce their growth and ultimately disappear from the area. We experimentally evaluated how reduced water transparency affected the photosynthetic production of a charophyte community dominated by Chara aspera and C. canescens in a brackish-water ecosystem of Haapsalu Bay in June–July 2009. Plastic shades were used to manipulate light conditions in the experimental plots. Two types of nets were used so that plants received either 25% or 50% of the natural irradiance relative to the control community (100%). The results clearly demonstrated that light limitation significantly reduced the net photosynthetic production of charophytes, but a considerable effect was observed within the first 24 h only. What is more significant, the charophyte community recovered its photosynthetic production within two weeks of the experiment in spite of the constant reduction of light down to 25% of the natural irradiance. This suggests that charophytes are able to adapt to a low light environment and recover their photosynthetic performance within a short period even under stressful brackish-water conditions.



Andrews, M., Box, R., McInroy, S., and Raven, J. A. 1984. Growth of Chara hispida. II. Shade adaptation. Journal of Ecology, 72, 885–895.

Asaeda, T., Sultana, M., Manatunge, J., and Fujino, T. 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environmental and Experimental Botany, 52, 225–238.

Auderset Joye, D., Castella, E., and Lachavanne, J.-B. 2002. Occurrence of Characeae in Switzerland over the last two centuries (1800–2000). Aquatic Botany, 72, 369–385.

Binzer, T., Sand-Jensen, K., and Middelboe, A.-L. 2006. Community photosynthesis of aquatic macrophytes. Limnology and Oceanography, 51, 2722–2733.

Blindow, I. 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology, 28, 9–14.

Blindow, I. 2000. Distribution of charophytes along the Swedish coast in relation to salinity and eutrophication. International Review of Hydrobiology, 85, 707–717.<707::AID-IROH707>3.3.CO;2-N

Blindow, I. 2001. Charophytes along the Swedish coast: occurrence and ecology. Schriftenreihe für Landschaftspflege und Naturschutz, 72, 39–40.

Blindow, I., Hargeby, A., and Andersson, G. 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany, 72, 315–334.

Blindow, I., Dietrich, J., Möllmann, N., and Schubert, H. 2003. Growth, photosynthesis and fertility of Chara aspera under different light and salinity conditions. Aquatic Botany, 76, 213–234.

Copertino, M. S., Cheshire, A., and Waitling, J. 2006. Photoinhibition and photoacclimation of turf algal communities on a temperate reef, after in situ transplantation experiments. Journal of Phycology, 42, 580–592.

De Winton, M. D., Taumoepeau, A. T., and Clayton, J. S. 2002. Fish effects on charophyte establishment in a shallow, eutrophic New Zealand lake. New Zealand Journal of Marine and Freshwater Research, 36, 815–823.

Dickey, T. D., Kattawar, G. W., and Voss, K. J. 2011. Shedding new light on light in the ocean. Physics Today, 64(4), 44–49.

Dugdale, T. M, Hicks, B. J., de Winton, M., and Taumoepeau, A. 2006. Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquatic Conservation: Marine and Freshwater Ecosystems, 16, 193–202.

Elith, J., Leathwick, J. R., and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.

Hautier, Y., Niklaus, P. A., and Hector, A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science, 324(5927), 636–638.

HELCOM. 2014. Manuals%20and%20Guidelines/COMBINE_AnnexC9_MonitoringPhytobentic.pdf (accessed 03.02.2014).

Henricson, C., Sandberg-Kilpi, E., and Munsterhjelm, R. 2006. Experimental studies on the impact of turbulence, turbidity and sedimentation on Chara tomentosa L. Cryptogamie, Algologie, 27, 419–434.

Johnsen, S. and Sosik, H. 2004. Shedding light on light in the ocean. Oceanus Magazine, 43(2), 1–5.

Kling, G. W., Hayhoe, K., Johnson, L. B., Magnuson, J. J., Polasky, S., Robinson, S. K., et al. 2003. Confronting Climate Change in the Great Lakes Region: Impacts on Our Communities and Ecosystems. Union of Concerned Scientists, Cambridge, Massachusetts, and Ecological Society of America, Washington, D.C.

Kotta, J., Torn, K., Martin, G., Orav-Kotta, H., and Paalme, T. 2004. Seasonal variation of invertebrate grazing on Chara connivens and C. tomentosa in Kõiguste Bay, NE Baltic Sea. Helgoland Marine Research, 58, 71–76.

Kotta, J., Jaanus, A., and Kotta, I. 2008. Haapsalu and Matsalu Bays. In Ecology of Baltic Coastal Waters. Ecological Studies 197 (Schiewer, U., ed.), pp. 245–258. Springer, Berlin, Heidelberg.

Kotta, J., Torn, K., Reisalu, G., and Veber, T. 2013. Relationships between mechanical disturbance and biomass of the invasive amphipod Gammarus tigrinus within a charophyte dominated macrophyte community. Marine Ecology, in press

Kovtun, A., Torn, K., Martin, G., Kullas, T., Kotta, J., and Suursaar, Ü. 2011. Influence of abiotic environmental conditions on spatial distribution of charophytes in the coastal waters of West Estonian Archipelago, Baltic Sea. Journal of Coastal Research, SI64(1), 412–416.

Kufel, L. and Kufel, I. 2002. Chara beds acting as nutrient sinks in shallow lakes – a review. Aquatic Botany, 72, 249–260.

Kurtz, J. C., Yates, D. F., Macauley, J. M., Quarles, R. L., Genthner, F. J., Chancy, C. A., and Devereux, R. 2003. Effects of light reduction on growth of the submerged macrophyte Vallisneria americana and the community of root-associated heterotrophic bacteria. Journal of Experimental Marine Biology and Ecology, 291, 199–218.

Küster, A., Schaible, R., and Schubert, H. 2000. Light acclimation of the charophyte Lamprothamnium papulosum. Aquatic Botany, 68, 205–216.

Küster, A., Schaible, R., and Schubert, H. 2004. Light acclimation of photosynthesis in three charophyte species. Aquatic Botany, 79, 111–124.

Langangen, A. 2007. Charophytes of the Nordic Countries. Saeculum ANS, Oslo.

Libbert, E. and Walter, T. 1985. Photosynthetic production of a brackish water community of Chara tomentosa L. and its dependence on environmental conditions. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 70, 359–368.

Lindén, E., Lehtniemi, M., and Viitasalo, M. 2003. Predator avoidance behaviour of Baltic littoral mysids Neomysis integer and Praunus flexuosus. Marine Biology, 143, 845–850.

Marquardt, R. and Schubert, H. 2009. Photosynthetic characterisation of Chara vulgaris in bioremediation ponds. Charophytes, 2(1), 1–8.

Mathieson, A. C. and Nienhuis, P. H. (eds). 1991. Intertidal and Littoral Ecosystems. Elsevier Science Publication, Amsterdam.

Middelboe, A.-L. and Binzer, T. 2004. Importance of canopy structure on photosynthesis in single- and multi-species assemblages of marine macroalgae. Oikos, 107, 422–432.

Middelboe, A.-L., Sand-Jensen, K., and Binzer, T. 2006. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. Oecologia, 150,

Munsterhjelm, R. 2005. Natural succession and human-induced changes in the soft-bottom macrovegetation of shallow brackish bays on the southern coast of Finland. Scientific Reports – Walter and Andrée de Nottbeck Foundation, 26, 1–53.

Noordhuis, R., van der Molen, D. T., and van den Berg, M. S. 2002. Response of herbivorous water-birds to the return of Chara in Lake Veluwemeer, The Netherlands. Aquatic Botany, 72, 349–367.

Pärnoja, M., Kotta, J., Orav-Kotta, H., and Paalme, T. 2013. Comparisons of individual and community photosynthetic production indicate light limitation in the shallow water macroalgal communities of the northern Baltic Sea. Marine Ecology, in press

Pełechaty, M., Pełechata, A., Pukacz, A., and Burchardt, L. 2006. Interrelationships between macrophytes (including charophytes) and phytoplankton and the ecological state of lakes. Ecohydrology & Hydrobiology, 6(1–4), 79–88.

Schmieder, K., Werner, S., and Bauer, H.-G. 2006. Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany, 84, 245–250.

Schneider, S., Ziegler, C., and Melzer, A. 2006. Growth towards light as an adaptation to high light conditions in Chara branches. New Phytologist, 172, 83–91.

Schubert, H. and Blindow, I. (eds). 2003. Charophytes of the Baltic Sea. The Baltic Marine Biologists Publication No. 19. Koltz Scientific Books, Köningstein.

Schwarz, A. M., Hawes, I., and Howard-Williams, C. 1999. Mechanisms underlying the decline and recovery of a characean community in fluctuating light in a large oligotrophic lake. Australian Journal of Botany, 47, 325–336.

Sorrell, B. K., Tanner, C. C., and Brix, H. 2012. Regression analysis of growth responses to water depth in three wetland plant species. AoB PLANTS 2012: pls043

Torn, K., Martin, G., Kotta, J., and Kupp, M. 2010. Effects of different types of mechanical disturbances on a charophyte dominated macrophyte community. Estuarine, Coastal and Shelf Science, 87, 27–32.

Van den Berg, M., Scheffer, M., and Coops, H. 1998. The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology, 34, 750–756.

Zhang, M., Cao, T., Ni, L., Xie, P., and Li, Z. 2010. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environmental and Experimental Botany, 68, 44–50.


Back to Issue

Back issues