eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology

Dominant cyanobacterial genera in Lake Peipsi (Estonia/Russia): effect of weather and nutrients in summer months; pp. 229–243

Full article in PDF format | doi: 10.3176/eco.2013.4.01

Reet Laugaste, Kristel Panksep, Marina Haldna


Hydrochemical and phytoplankton data from L. Peipsi (3555 km2, mean depth 7.1 m) for July–September 1997–2011 (two lake basins) and for August 2003–2011 (three lake basins) were analysed. Our aim was to explain the impact of nutrient content and weather factors on the composition and species dominance of cyanobacteria. The share of cyanobacteria was on average 64% of the total biomass, maximum values amounted to 93% and 38 g m–3 in the areas of open water. Close to the lake shores these values reached 99% and 100 g m–3 in some cases. The most prevalent taxa affecting cyanobacterial biomass were Gloeotrichia echinulata in the littoral areas and Microcystis species in the open water. Principal component analysis placed all dominant genera (Aphanizomenon, Anabaena, Gloeotrichia, and Microcystis) separately from each other. Stepwise multiple analysis showed G. echinulata to be fairly independent of nutrients and related to the days with water temperature over 22 °C. The biomass of the genus Microcystis was found to have evidently the strongest positive connections with phosphorus and also with iron, as well as with all potentially toxic (vacuolated) forms of cyanobacteria. The other group of cyanobacteria, mainly small-celled colonial forms (Aphanocapsa, Aphanothece, Cyanodictyon, etc), constituted on average up to a fourth of the cyanobacterial biomass; its biomass showed a reasonably positive correlation with nitrogen and a negative correlation with water level. In summer, the succession of cyanobacterial genera in the lake started with Anabaena, then Gloeotrichia appeared (in the larger and deeper moderately eutrophic northern part of the lake), followed by Microcystis and Aphanizomenon.


Arvola, L., Järvinen, M., & Tulonen, T. 2011. Long-term trends and regional differences of phyto­plankton in large Finnish lakes. Hydrobiologia, 660, 125-134.

Carey, C. C. & Rengefors, K. 2010. The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. Journal of Plankton Research, 32, 1349–1354.

Dokulil, M. T. & Teubner, K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia, 468, 1-12.

Downing, J. A., Watson, S. B., & McCauley, E. 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1905-1908.

Ferber, L. R., Levine, S. N., Lini, A., & Livingston, G. P. 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology, 49, 690-708.

Haberman, J., Haldna, M., Laugaste, R., & Blank, K. 2010. Recent changes in large and shallow Lake Peipsi (Estonia/Russia): causes and consequences. Polish Journal of Ecology, 58, 645-662.

Havens, K. E., James, R. T., East, T. L., & Smith, V. H. 2003. N : P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379-390.

Jaani, A. 2001. The location, size and general characterization of Lake Peipsi and its catchment area. In Lake Peipsi: Meteorology, Hydrology, Hydrochemistry (Nõges, T., ed.), pp. 10–17. Sulemees Publishers, Tartu.

Jaani, A., Klaus, L., Pärn, O., Raudsepp, U., Zadonskaja, O., Gronskaja, T., & Solntsev, V. 2008. Hüdro­loogia. In Peipsi (Haberman, J., Timm, T., & Raukas, A., eds), pp. 113–155. Eesti Loodusfoto, Tartu.

Jensen, J. E., Jeppesen, E., Olrik, K., & Kristensen, P. 1994. Impacts of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow lakes. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1692-1699.

Kangur, K. & Möls, T. 2008. Changes in spatial distribution of phosphorus and nitrogen in the large north-temperate lowland Lake Peipsi (Estonia/Russia). Hydrobiologia, 599, 31–39.

Karlsson-Elfgren, I., Ryding, E., Hyenstrand, P., & Pettersson, K. 2003. Recruitment and pelagic growth of Gloeotrichia echinulata (Cyanophyceae) in Lake Erken. Journal of Phycology, 39, 1050–1056.

Karlsson-Elfgren, I., Rengefors, K., & Gustafsson, S. 2004. Factors regulating recruitment from the sediment to the water column in the bloom-forming cyanobacterium Gloeotrichia echinulata. Freshwater Biology, 49, 265-273.

Kovács, A. W., Tóth, V. R., & Vörös, L. 2012. Light-dependent germination and subsequent proliferation of N2-fixing cyanobacteria in a large shallow lake. International Journal of Limnology, 48, 177-185.

Laugaste, R., Jastremskij, V., & Ott, I. 1996. Phytoplankton of Lake Peipsi-Pihkva: species composition, biomass and seasonal dynamics. Hydrobiologia, 338, 49-62.

Laugaste, R., Nõges, P., Nõges, T., Yastremskij, V. V., Milius, A., & Ott, I. 2001. Algae. In Lake Peipsi. Flora and Fauna (Pihu, E. & Haberman, J., eds), pp. 31-49. Sulemees Publishers, Tartu.

Laugaste, R., Nõges, T., & Tõnno, I. 2008. Vetikad. In Peipsi (Haberman, J., Timm, T., & Raukas, A., eds), pp. 251-270. Eesti Loodusfoto, Tartu.

Li, H., Murphy, T., Guo, J., Parr, T., & Nalewajko, C. 2009. Iron-stimulated growth and micro­cystin production of Microcystis novacekii UAM 250. Limnologica, 39, 255-259.

Marinho, M. M. & Huszar, V. L. M. 2002. Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). Archiv für Hydrobiologie, 153, 443-468.

Milius, A. & Haldna, M. 2008. Hüdrokeemia. In Peipsi (Haberman, J., Timm, T., & Raukas, A., eds), pp. 157-178. Eesti Loodusfoto, Tartu.

Milius, A., Laugaste, R., Möls, T., Haldna, M., & Kangur, K. 2005. Water level and water tem­perature as factors determining phytoplankton biomass and nutrient content in Lake Peipsi. Proceedings of the Estonian Academy of Sciences, 54, 5–17.

Ni, W., Zhang, J., Ding, T., Stevenson, R. J., & Zhu, Y. 2012. Environmental factors regulating cyanobacteria dominance and microcystin production in a subtropical lake within the Taihu watershed, China. Journal of Zheijang University SCIENCE, A 13, 4, 311–322.

Nõges, T., Laugaste, R., Nõges, P., & Tõnno, I. 2008. Critical N : P ratio for cyanobacteria and
N2-fixing species in large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia, 599, 77–86.

OECD. 1982. Eutrophication of Waters, Monitoring, Assessment and Control. OECD, Paris.

Oliver, R. L. & Ganf, G. G. 2002. Freshwater blooms. In The Ecology of Cyanobacteria (Whitton, B. A. & Potts, M., eds), pp. 149–194. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Ou, M.-M., Wang, Y., Zhou, B.-X., & Cai, W.-M. 2006. Effects of iron and phosphorus on Microcystis physiological reactions. Biomedical and Environmental Sciences, 19, 399–404.

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 21.09.2013).

Reynolds, C. S. 2006. The Ecology of Phytoplankton. Cambridge University Press, New York.

Salmaso, N. 2000. Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia, 438, 43–63.

Scheffer, M. S. 1998. Eclogy of Shallow Lakes. Chapman & Hall, London.

Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R., & Vannes, E. H. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78, 272–282.[0272:OTDOFC]2.0.CO;2

Tan, X., Kong, F.-x., Cao, H.-s., Yang, Y., & Zhang, M. 2008. Recruitment of bloom-forming cyanobacteria and its driving factors. African Journal of Biotechnology, 7, 4726–4731.

Tanner, R., Kangur, K., Spoof, L., & Meriluoto, J. 2005. Hepatotoxic cyanobacterial peptides in Estonian freshwater bodies and inshore marine water. Proceedings of the Estonian Academy of Sciences. Biology. Ecology, 54, 40–52.

Teubner, K., Feyerabend, R., Henning, M., Nicklisch, A., Woitke, P., & Kohl, J.-G. 1999. Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen : phosphorus ratio in hypertrophic riverine lakes. Archiv für Hydrobiologie, Special Issue Advances in Limnology, 54, 325–344.

Trimbee, A. M. & Prepas, E. E. 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Canadian Journal of Fisheries and Aquatic Sciences, 14, 1337–1342.

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen - Internationale Vereinigung für theoretische und angewandte Limnologie, 9, 1–38.

Vrede, T., Ballantyne, A., Mille-Lindblom, C., Algesten, G., Gudasz, C., Lindahl, S., & Brunberg, A. K. 2009. Effects of N : P loading ratios on phytoplankton community composition, primary production, and N fixation in a eutrophic lake. Freshwater Biology, 54, 331–344.

Wang, H.-J., Liang, X.-M., Jiang, P.-H., Wang, J., Wu, S.-K., & Wang, H.-Z. 2008. TN : TP ratio and planktivorous fish do not affect nutrient–chlorophyll relationships in shallow lakes. Freshwater Biology, 53, 935–944.

Yamamoto, Y. 2009. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flos-aquae. Journal of Limnology, 68, 122–132.

Back to Issue