eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology
Iron forms and peroxidase activity in forest island soils; pp. 81–99
PDF | doi: 10.3176/eco.2013.2.01

Lech W. Szajdak, Teresa Meysner

Oxidation–reduction reactions play a key role in ecologically important biogeochemical processes in soil and influence soil chemical, biochemical, and biological properties. The objective of this study was to compare the effect of a forest island located on two kinds of soils on the concentrations of iron forms and peroxidase activity participating in oxidation–reduction processes. The investigations were carried out in the Agroecological Landscape Park in Turew (40 km south of Poznań, Western Polish Lowland, 16°45¢E, 52°01¢N). The subject of the study was a palace park, which can be considered as a forest island. Part of this forest island is located on mineral soil and another part on mineral–organic soil. Our results showed that the flow of ground­water was accompanied by an increase in peroxidase activity, total iron concentration, and Fe(II) and Fe(III) ions in the mineral soils in most periods of sampling. However, an increase of peroxidase activity and a decrease of total iron concentration and Fe(II) and Fe(III) ions accompanying the flow of groundwater were observed in the mineral–organic soils.


Bartha, R. & Bordeleau, L. 1969. Cell-free peroxidases in soil. Soil Biology & Biochemistry, 1, 139–143.

Bartha, R., Linke, H. A. B. & Pramer, D. 1968. Pesticide transformations: production of chloro­azobenzenes from chloroanilines. Science, 161, 582–583.

Bertini, I., Cremonini, M. A., Ferretti, S., Lozzi, I., Luchinat, C. & Viezzoli, M. S. 1996. Arene hydroxylases: metalloenzymes catalyzing dioxygenation of aromatic compounds. Coordination Chemistry Reviews, 151, 145–160.

Bollag, J. M., Chen, Ch. M., Sarkar, J. M. & Loll, M. 1987. Extraction and purification of a peroxidase from soil. Soil Biology & Biochemistry, 19(1), 61–67.

Bordeleau, L. M. & Bartha, R. 1972. Biochemical transformations of herbicide-derived anilines in culture medium and in soil. Canadian Journal of Microbiology, 18, 1857–1864.

Cervantes, F. J., de Bok, F. A. M., Duong-Dac, T., Stams, A. J. M., Lettinga, G. & Field, J. A. 2002. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic micro­organisms. Environmental Microbiology, 4, 51–57.

Chen, Y. 1996. Organic matter reactions involving micronutrients in soils and their effect on plants. In Humic Substances in Terrestrial Ecosystems (Piccolo, A., ed.), pp. 507–529. Elsevier, Oxford.

Chen, J., Gu, B., Royer, R. A. & Burgos, W. D. 2003. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment, 307, 167–178.

Chen, J. L., Zhuo, S. J., Wu, Y. Q., Fang, F., Li, L. & Zhu, Ch. Q. 2006. High selective determin­ation iron(II) by its enhancement effect on the fluorescence of pyrene-tetramethylpiperidinyl (TEMPO) as a spin fluorescence probe. Spectrochimica Acta Part A, 63, 438–443.

Choinowski, T., Blodig, W., Winterhalter, K. H. & Piontek, K. 1999. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxyl group on the Cb of tryptophan 171: a novel radical site formed during the redox cycle. Journal of Molecular Biology, 286, 809–827.

Criquet, S., Farnet, A. M., Tagger, S. & Le Petit, J. 2000. Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biology & Biochemistry, 32, 1505–1513.

Dec, J., Haider, K. & Bollag, J. M. 2001. Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Science, 166, 660–671.

Dec, J., Haider, K. & Bollag, J. M. 2003. Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere, 52, 549–556.

Fimmen, R. L., Cory, R. M., Chin, Y. P., Trouts, T. D. & McKnight, D. M. 2007. Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta, 71, 3003–3015.

Galstyan, A. S. 1958. Determination of comparative activity of peroxidase and polyphenol oxidase in soil. Doklady Akademii Nauk Armyanskoj SSR, 26, 285–288 (in Russian).

Gliński, J., Sahr, K., Stępniewska, Z. & Brzezińska, M. 1996. Changes of redox and pH conditions in flooded soil amended with glucose and manganese oxide under laboratory conditions. Zeitschrift für Pflanzenernährung und Bodenkunde, 155, 13–17.

Goswami, D. C. & Kalita, H. 1988. Rapid determination of iron in water by modified thiocyanate method. Defence Science Journal, 38(2), 177–182.

Grybos, M., Davranche, M., Gruau, G. & Petitjean, P. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reductions? Journal of Colloid and Interface Science, 314, 490–501.

Harrison, R. M. 1992. Understanding Our Environment: An Introduction to Environmental Chemistry and Pollution. The Royal Society of Chemistry, University of Birmingham.

Jansen, B., Nierop, K. G. J. & Verstraten, J. M. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe(II), Fe(III) and Al(III) in soil solutions determined by diffusive gradients in thin films. Analytica Chimica Acta, 454, 259–270.

Jansen, B., Nierop, K. G. J. & Verstraten, J. M. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma, 113, 323–340.

Kerstetter, R. E., Zepp, R. G. & Carreira, L. H. 1998. Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter. Biogeochemistry, 42, 311–323.

Kozlov, K. 1964. Enzymatic activity of rhizosphere and soils in the East Siberia area. Folia Micro­biologica (Praha), 9, 145–149.

Lindsay, W. L. & Schwab, A. P. 1982. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5, 821–840.

Lovley, D. R. & Anderson, R. T. 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8, 77–88.

Marczenko, Z., Balcerzak, M. & Kloczko, E. 2000. Separation, Preconcentration and Spectro­photometry in Inorganic Analysis. Elsevier.

Meysner, T., Maryganova, V. & Szajdak, L. 2006. Transformation of nitrogen compounds in the mucous soils of a forest island. Acta Agrophysica, 7, 447–452.

Minczewski, L. & Marczenko, Z. 1976. Analytic Chemistry. PWN, Warszawa (in Polish).

Moghimi, A., Tate, M. E. & Oades, J. M. 1978. Characterization of rhizosphere products, especially 2-ketogluconic acid. Soil Biology & Biochemistry, 10, 283–287.

Nicell, J. A. & Wright, H. 1997. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme and Microbial Technology, 21, 302–310.

Pedersen, H. D., Postma, D., Jakobsen, R. & Larsen, O. 2005. Fast transformation of iron oxy­hydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica Acta, 69, 3967–3977.

Peretyazhko, T. & Sposito, G. 2006. Reducing capacity of terrestrial humin acids. Geoderma, 137, 140–146.

Reuter, R. J. & Bell, J. C. 2001. Soils and hydrology of a wet-sandy catena in east-central Minnesota. Soil Science Society of America Journal, 65, 1559–1569.

Ryszkowski, L. & Bartoszewicz, A. 1989. Impact of agricultural landscape structure on cycling of inorganic nutrients. In Ecology of Arable Land (Clarholm, M., Bergström, L. & Dordrecht, L., eds), pp. 241–246. Kluwer Academic Publishing.

Ryszkowski, L., Bartoszewicz, A. & Kędziora, A. 1999. Management of master fluxes by bio­geochemical barriers at the agricultural landscape level. Landscape Ecology, 14, 479–492.

Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32, 2984–2989.

Smolander, A. & Kitunen, V. 2002. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology & Biochemistry, 34, 651–660.

Stevenson, F. J. 1982. Humus Chemistry Genesis, Composition, Reactions. A Wiley-Intercience Publication, USA.

Straub, K. L., Benz, M. & Schink, B. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186.

Szajdak, L., Maryganova, V. & Meysner, T. 2002a. Function of a shelterbelt as a biogeochemical barrier in the agicultural landscape. Acta Agrophysica, 67, 263–273.

Szajdak, L., Maryganova, V., Meysner, T. & Tychinskaja, L. 2002b. Effect of shelterbelt on two kinds of soils on the transformation of organic matter. Environment International, 28, 383–392.

Tan, K. H. 2003. Chemical processes. In Handbook of Processes and Modeling in the Soil–Plant System (Benbi, D. K. & Nieder, R., eds), pp. 27–56. Haworth Press, New York.

Tarafder, P. K. & Thakur, R. 2005. Surfactant-mediated extraction of iron and its spectro­photometric determination in rocks, minerals, soils, stream sediments and water samples. Microchemical Journal, 80, 39–43.

Ye, M. Y., Shen, Y., West, C. C. & Lyon, W. G. 1998. Analysis of ferric and ferrous ions in soil extracts by ion chromatography. Journal of Liquid Chromatography & Related Technologies, 21, 551–565.

Back to Issue

Back issues