eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology

Biochemical and structural characteristics of Scots pine (Pinus sylvestris L.) in an alkaline environment; pp. 264–283

Full article in PDF format | doi: 10.3176/eco.2011.4.02

Malle Mandre, Aljona Lukjanova


Investigations in a 75–85-year-old Scots pine stand were performed on a territory influenced over 40 years by alkaline dust pollution (pH 12.3–12.7) emitted from a cement plant. Sample plots were located at distances of 2, 3, and 5 km E of the emission source and a control sample plot was selected on an unpolluted territory 38 km W of it. We studied soil properties and the anatomical structure, mineral nutrition, and pigments in Scots pine needles. The alkaline dust pollution has affected the biogeochemical cycling in the forest ecosystem, increasing the pH and total Ca, K, Fe, Mn, and Mg and decreasing N, C, organic matter, and C/N compared to the unpolluted soils. Alkalization and changes in the nutrient composition of soil had caused serious disbalances in nutrient availability and in the mineral composition of trees. Deficiency in foliar N and Mn and excess of K, Ca, and Fe contents had caused a decrease in the average chlorophyll concentrations. Carotenoids seemed to be more tolerant both to changes in soil and needle nutrient composition. The Chl a/Chl b ratio in needles was found to have declined. With the alkalization of the environment the total area of the needle cross-section, needle thickness, and mesophyll area had also decreased compared with control. Differences in the anatomical characteristics of needles between the polluted and unpolluted areas were significant in the oldest needles. The decrease of mesophyll was associated with the content of chlorophylls and correlated with N concentrations in needles.


Apple, M., Tiekotter, K., Snow, M., Young, J., Soeldner, A., Phillips, D., Tingei, D. & Bond, B. J. 2002. Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiol., 22(2–3), 129–136.

Augustaitis, A., Šopauskiene, D. & Baužiene, I. 2010. Direct and indirect effects of regional air pollution on tree crown defoliation. Balt. For., 16(1), 23–34.

Bäck, J. &. Huttunen, S. 1992. Structural responses of needles of conifer seedlings to acid rain treatment. New Phytol., 120(1), 77–88.

Bozzola, J. J. & Russell, L. D. 1992. Electron Microscopy: Principles and Techniques for Biologists. Jones and Bartlett Publishers, Sudbury.

Brække, F. H. & Salih, N. 2002. Reliability for foliar analysis of Norway spruce stands in a Nordic gradient. Silva Fenn., 36(2), 489–504.

DeLucia, E. H., Nelson, H., Vogelmann, T. C. & Smith, W. K. 1996. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ., 19(2), 159–170.

Environmental Information Centre. 1996. Estonian Environment 1995. Environmental Information Centre, Ministry of the Environment of Estonia, Tallinn.

Environmental Information Centre. 1997. Estonian Environment 1996. Environmental Information Centre, Ministry of the Environment of Estonia, Tallinn.

Fedorkov, A. L. 2002. Variation in the anatomical characters of needles and their resistance to technogenic and climatic stress in Scotch pine. Russ. J. Ecol., 33(1), 65–67.

Finck, A. 1982. Fertilizers and Fertilization. Verlag Chemie, Weinheim.

Formánek, P. & Vranová, V. 2003. A contribution to the effect of liming on forest soils: review of literature. J. For. Sci., 49(4), 182–190.

Gebauer, G., Zeller, B., Schmidt, G., May, C., Buchmann, N., Colin-Belgrand, M., Dambrine, E., Martin, F., Schulze, E.-D. & Bottner, P. 2000. The fate of 15N-labelled nitrogen inputs to coniferous and broadleaf forests. In Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142 (Schulze, E.-D., ed.), pp. 144–170. Springer-Verlag, Berlin.

González, A. V. & Gianoli, E. 2004. Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth. Acta Oecol., 26(3), 185–190.

Gowin, T. & Góral, I. 1977. Chlorophyll and pheophytin content in needles of different age of trees growing under conditions of chronic industrial pollution. Acta Soc. Bot. Pol., 46(1), 151–159.

Guderian, R. 1977. Air Pollution. Springer-Verlag, Berlin, Heidelberg, New York.

Günthardt-Goerg, M. S. & Vollenweider, P. 2007. Linking stress with macroscopic and micro­scopic leaf response in trees: new diagnostic perspectives. Environ. Pollut., 147(3), 467–488.

Han, Q. M., Kawasaki, T., Katahata, S., Mukai, Y. & Chiba, Y. 2003. Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiol., 23(12), 851–857.

Haynes, R. J. 1986. The decomposition process: mineralization, immobilization, humus formation, and degradation. In Mineral Nitrogen in the Plant–Soil System (Haynes, R. J., ed.), pp. 52–126. Academic Press, Orlando.

Hellmann, B. 1993. N2O-Emissionen aus unterschiedlich behandelten Fichtenstandorten im Höglwald. Dissertation. TU München. Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung, 19. Garmisch-Partenkirchen.

Huttunen, S. 1985. Ecophysiological effects of air pollution on conifers. In Symposium on the Effects of Air Pollution on Forest and Water Ecosystems. Helsinki, April 23–24, 1985, pp. 25–31.

Huttunen, S. & Laine, K. 1983. Effects of air borne pollutants on surface structure of Pinus sylvestris L. needles. Ann. Bot. Fenn., 20(1), 79–86.

Ingestad, T. 1987. New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma, 40(3–4), 237–252.

IUSS Working Group WRB. 2006. World Reference Base for Soil Resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO, Rome.

Jäger, H. J. & Klein, H. 1980. Biochemical and physiological effect of SO2 on plants. Angew. Bot., 54(5–6), 337–348.

Kaasik, M., Alliksaar, T., Ivask, J. & Loosaar, J. 2005. Spherical fly ash particles from oil shale fired power plants in atmospheric precipitations. Possibilities of quantitative tracing. Oil Shale, 22, 547561.

Kangur, A. 1988. Klorofüllide sisalduse muutustest männiokastes Põhja-Eesti tööstusrajoonides. In Kaasaegse ökoloogia probleemid. Ökoloogia ja ühiskond (Frey, T., ed.), pp. 53–57. Tartu University, Tartu (in Estonian).

Klõšeiko, J. 2005. Concentration of carbohydrates in conifer needles near Kunda cement plant, Estonia, nine years after reduced dust pollution. Metsanduslikud Uurimused Forestry Studies, 42, 87–94.

Knowles, R. 1981. Denitrification. In Soil Biochemistry. Vol. 5 (Paul, E. A. & Ladd, J. N, eds), pp. 323–369. Marcel Dekker, New York.

Ladanova, N. V. & Tuzilkina, V. V. 1992. The age changes of structure and function of the assimilating organs of Siberian spruce. In Anatomy, Physiology and Ecology of Forest Plants (Gabukova, V. V. & Chavchavadze, E. S., eds), pp. 90–92. Karelian Research Center of RAS, Petrozavodsk (in Russian).

Landis, T. D. 1985. Mineral nutrition as an index of seedling quality. In Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests (Duryea, M. L., ed.), pp. 29–48. Forest Research Laboratory, Oregon State University, Corvallis.

Lichtenthaler, H. K. & Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11(5), 591–592.

Lin, J., Sampson, D. A., Deckmyn, G. & Ceulemans, R. 2002. Significant overestimation of needle surface area estimates based on needle dimensions in Scots pine (Pinus sylvestris). Can. J. Bot., 80(9), 927–932.

Lõhmus, E. 2004. Eesti metsakasvukohatüübid. Eesti Loodusfoto, Tartu (in Estonian).

Lõhmus, K. & Lasn, R. 1990. Spruce and pine root structures and chemical characteristics in moderate acid soils. In Above- and Below-Ground Interactions in Forest Trees in Acidified Soils. Air Pollution Research Report 32 (Persson, H., ed.), pp. 74–78. Commission of the European Communities, Uppsala.

Lukjanova, A. & Mandre, M. 2010. Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut., 206(1–4), 13–22.

Mandre, M. 1995. Dust emission and deposition. In Dust Pollution and Forest Ecosystems. A Study of Conifers in an Alkalized Environment. Publication 3 (Mandre, M., ed.), pp. 18–22. Institute of Ecology, Tallinn.

Mandre, M. 2002. Relationships between lignin and nutrients in Picea abies L. under alkaline air pollution. Water Air Soil Pollut., 133(1–4), 361–377.

Mandre, M. 2009. Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Environ. Monit. Assess., 159(1–4), 111–124.

Mandre, M., Kangur, A., Laur, L., Pihlakas, E. & Ploompuu, T. 1986. Taimede füsioloogiline seisund Kundas. II. Mänd. Report in Kunda Tsement, Tallinn (in Estonian).

Mandre, M., Klõšeiko, J., Ots, K. & Tuulmets, L. 1999. Changes in phytomass and nutrient partitioning in young conifers in extreme alkaline growth conditions. Environ. Pollut., 105(2), 209–220.

Mandre, M., Kask, R., Pikk, J. & Ots, K. 2008. Assessment of growth and stemwood quality of Scots pine on territory influenced by alkaline industrial dust. Environ. Monit. Assess., 138(1–3), 51–63.

Manual for Integrated Monitoring. 1993. Programme Phase 1993–1996. Environmental Report, 5. Environment Data Centre, National Board of Waters and the Environment, Helsinki.

Marschner, H. 2002. Mineral Nutrition of Higher Plants. Academic Press, London, San Diego.

Niinemets, Ü., Lukjanova, A., Turnbull, M. H. & Sparrow, A. D. 2007. Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiol., 27(8), 1137–1151.

Nilsen, E. T. & Orcut, D. M. 1996. The Physiology of Plants under Stress. Abiotic Factors. John Wiley & Sons, INC., New York, Chichester, Brisbane.

Ohki, K., Wilson, D. O. & Anderson, O. E. 1980. Manganese deficiency and toxicity sensitivities of soybean cultivars. Agron. J., 72(5), 713–716.

Ots, K. 2002. Impact of Air Pollution on the Growth of Conifers in the Industrial Region of Northeast Estonia. DSc Thesis. Estonian Agricultural University, Tartu.

Ozolincius, R., Stakenas, V. & Serafinaviciute, B. 2005. Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition. Environ. Pollut., 137(3), 587–595.

Paal, J. 2007. Loodusdirektiivi elupaigatüüpide käsiraamat. Auratrükk, Tallinn (in Estonian).

Pallardy, S. G. 2008. Physiology of Woody Plants. Academic Press, Amsterdam.

Palomäki, V. & Raitio, H. 1995. Chemical composition and ultrastructural changes in Scots pine needles in a forest decline area in southwestern Finland. Trees Struct. Funct., 9(6),

Papke-Rothkamp, H. 1994. Einfluß saurer Beregnung und kompensatorischer Kalkung auf die Emission gasförmiger Stickstoffverbindungen aus Böden eines Fichtenbestandes. Doctoral thesis. Albert-Ludwigs-Universität Freiburg. Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung, 25. Garmisch-Partenkirchen.

Pärn, H. 2002. Relationships between radial growth of Scots pine and climate in the northeastern industrial region of Estonia. Metsanduslikud Uurimused Forestry Studies, 36, 47–61.

Paul, E. A. & Clark, F. E. 1996. Soil Microbiology and Biochemistry. Academic Press, San Diego.

Persson, T., van Oene, H., Harrison, A. F., et al. 2000. Experimental sites in the NIPHYS/CANIF project. In Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142 (Schulze, E.-D., ed.), pp. 14–46. Springer-Verlag, Berlin.

Pritchett, W. L. 1979. Properties and Management of Forest Soils. John Wiley and Sons, New York.

Rauk, J. 1995. Bioproductivity. In Dust Pollution and Forest Ecosystems. A Study of Conifers in an Alkalized Environment. Publication 3 (Mandre, M., ed.), pp. 119–123. Institute of Ecology, Tallinn.

Reich, P. B., Schoettle, A. W., Raba, R. M. & Admundson, R. G. 1986. Response of soybean to low concentration of ozone: 1. Reduction in leaf and whole plant net photosynthesis and leaf chlorophyll content. J. Environ. Qual., 15(1), 31–36.

Rinallo, C. Raddi, P., Gellini, R. & Di Lonardo, V. 1986. Effects of simulated acid deposition on the surface structure of Norway spruce and silver fir needles. Eur. J. For. Pathol., 16(7), 440–446.

Ruzin, S. E. 1999. Plant Microtechnique and Microscopy. Oxford University Press, New York, Oxford.

Růžička, J. & Hansen, E. H. 1981. Flow Injection Analysis. John Wiley and Sons, New York.

Schubert, R. (ed.). 1985. Bioindikation in terrestrischen Ökosystemen. Gustav Fischer Verlag, Jena.

Šimek, M., Jíšová, L. & Hopkins, D. W. 2002. What is the so-called optimum pH for denitrification in soil? Soil Biol. Biochem., 34(9), 1227–1234.

Sutinen, S. & Saarsalmi, A. 2008. Needle structure in relation to boron fertilization in Picea abies (L.) Karst. stands suffering from growth disturbance. Balt. For., 14(2), 98–102.

Sutinen, S., Lumme, I., Mäenpää, M. & Arkhipov, V. 1998. Light microscopic structure of needles of Scots pine (Pinus sylvestris L.) in relation to air pollution and needle element concen­trations in S.E. Finland and the Karelian Isthmus, N.W. Russia. Trees Struct. Funct., 12(5), 281–288.

Sutinen, S., Vuorinen, M. & Rikala, R. 2006. Developmental disorders in buds and needles of mature Norway spruce, Picea abies (L.) Karst., in relation to needle boron concentrations. Trees Struct. Funct., 20(5), 559–570.

Sutinen, S., Aphalo, P. J. & Lehto, T. 2007. Does timing of boron application affect needle and bud structure in Scots pine and Norway spruce seedlings? Trees Struct. Funct., 21(6), 661–670.

Świercz, A. 2006. Suitability of pine bark to evaluate pollution caused by cement-lime dust. J. For. Sci., 52 (Special Issue), 93–98.

Thomas, P. A. & Packham, J. R. 2007. Ecology of Woodlands and Forests. Description, Dynamics and Diversity. Cambridge University Press, Cambridge, New York, Melbourne.

Vernon, L. P. 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Chem., 32(9), 1144–1150.

Warren, C. R., Dreyer, E. & Adams, M. A. 2003. Photosynthesis–Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees Struct. Funct., 17(4), 359–366.

Wehrmann, J. 1963. Möglichkeiten und Grenzen der Blattanalyse in der Forstwirtschaft. Landwirtsch. Forsch., 16(2), 130–145.

Back to Issue