eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology

Effect of abiotic environment on the distribution of the attached and drifting red algae Furcellaria lumbricalis in the Estonian coastal sea; pp. 245–258

Full article in PDF format | doi: 10.3176/eco.2009.4.01

Priit Kersen, Helen Orav-Kotta, Jonne Kotta, Henn Kukk


Biomass distribution patterns of attached and drifting forms of Furcellaria lumbricalis in the whole Estonian coastal sea including the Gulf of Riga, the West Estonian Archipelago Sea, the Gulf of Finland, and the Baltic Proper are described. The study showed that the combination of multiple environmental variables explained the distribution of attached and drifting forms of F. lumbricalis and different environmental variables were important for different forms of the red alga. The attached F. lumbricalis inhabited deep hard-bottom areas that were exposed to waves. The drifting F. lumbricalis was confined to deep but more sheltered habitats characterized by the presence of a weak topographic depression, soft bottoms, and a high sediment load.


Austin, A. P. 1960a. Life history and reproduction of Furcellaria fastigiata (L.) Lam. 1. The haploid plants and the development of the carposporophyte. Ann. Bot. N.S., 24, 257–276.

Austin, A. P. 1960b. Life history and reproduction of Furcellaria fastigiata (L.). Lam. 2. The tetrasporophyte and reduction division in the tetrasporangium. Ann. Bot. N.S., 24, 296–312.

Austin, A. P. 1960c. Observations on Furcellaria fastigiata (L.) Lam. forma aegagropila Reinke in Danish waters together with a note on other unattached algal forms. Hydrobiologia, 14, 255–277.

Bergström, L. & Bergström, U. 1999. Species diversity and distribution of aquatic macrophytes in the Northern Quark, Baltic Sea. Nord. J. Bot., 19, 375–383.

Bird, C. J., Chen, L. C.-M. & McLachlan, J. 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikhaviae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar., 22, 521–527.

Bird, C. J., Saunders, G. W. & McLahlan, J. 1991. Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. J. Appl. Phycol., 3, 61–82.

Bučas, M., Daunys, D. & Olenin, S. 2007. Overgrowth patterns of the red algae Furcellaria lumbricalis at an exposed Baltic Sea coast: the results of a remote underwater video data analysis. Estuar. Coast. Shelf Sci., 75, 308–316.

Clarke, K. R. & Gorley, R. N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

Clarke, K. R., Somerfield, P. J. & Chapman, M. G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol., 330, 55–80.

Dixon, P. S. & Irvine, L. M. 1977. Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 1. Introduction, Nemaliales, Gigartinales. British Museum (Natural History), London.

Eriksson, B. K. & Bergström, L. 2005. Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuar. Coast. Shelf Sci., 62, 109–117.

Eriksson, B. K. & Johansson, G. 2005. Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia, 143, 438–448.

ESRI, 2001. ArcGIS Spatial Analyst: Advanced GIS Spatial Analysis Using Raster and Vector Data. New York.

Falandysz, J., Trzosinska, A., Szefer, P., Warzocha, J. & Dragnik, B. 2000. The Baltic Sea, especially southern and eastern regions. In Seas at the Millennium: An Environmental Evaluation (Sheppard, C., ed.). Mar. Pollut. Bull., 41, 99–120.

Guiry, M. D. & Guiry, G. M. 2009. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. (accessed 2 February 2009).

HELCOM. 1999. Guidelines for Monitoring of Phytobenthic Plant and Animal Communities in the Baltic Sea. Annex for HELCOM COMBINE Programme. Compiled by S. Bäck.

Isæus, M. 2004. Factors Structuring Fucus Communities at Open and Complex Coastlines in the Baltic Sea. PhD Thesis, Department of Botany, Stockholm University, Sweden.

Kain, J. M. & Norton, T. A. 1990. Marine ecology. In Biology of the Red Algae (Cole, K. M. & Sheath, R. G., eds), pp. 377–408. Cambridge University Press.

Kautsky, L. & Kautsky, H. 1989. Algal species diversity and dominance along gradients of stress and disturbance in marine communities. Vegetatio, 83, 259–267.

Kautsky, L. & Kautsky, N. 2000. The Baltic Sea, including Bothnian Sea and Bothnian Bay. In Seas at the Millennium: An Environmental Evaluation (Sheppard, C., ed.). Mar. Pollut. Bull., 41, 1–14.

Kersen, P. & Martin, G. 2007. Annual biomass loss of the loose-lying red algal community via macroalgal beach casts in the Väinameri area, NE Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol., 56, 278–289.

Kiirikki, M. 1996. Mechanisms affecting macroalgal zonation in the northern Baltic Sea. Eur. J. Phycol., 31, 225–232.

Kornfeldt, R.-A. 1979. Biomass of macroalgae along the coast of Halland, SW Sweden. Sven. Bor. Tidskr., 73, 131–138.

Kostamo, K. 2008. The life cycle and genetic structure of the red alga Furcellaria lumbricalis on a salinity gradient. W. & A. de Nottbeck Foundation Sci. Rep., 33, 1–34.

Kotta, J. & Orav, H. 2001. Role of benthic macroalgae in regulating macrozoobenthic assemblages in the Väinameri (north-eastern Baltic Sea). Ann. Zool. Fenn., 38, 163–171.

Kotta, J., Paalme, T., Martin, G. & Mäkinen, A. 2000. Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica. Int. Rev. Hydrobiol., 85, 693–701.

Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K. & Ojaveer, H. 2008a. Gulf of Riga and Pärnu Bay. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 217–243. Springer, Berlin.

Kotta, J., Paalme, T., Kersen, P., Martin, G., Herkül, K. & Möller, T. 2008b. Density dependent growth of the red algae Furcellaria lumbricalis and Coccotylus truncatus in the West-Estonian Archipelago Sea, northern Baltic Sea. Oceanologia, 50, 577–585.

Kruk-Dowgiałło, L. & Szaniawska, A. 2008. Gulf of Gdańsk and Buck Bay. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 139–165. Springer, Berlin.

Lauringson, V. & Kotta, J. 2006. Influence of the thin drift algal mats on the distribution of macrozoobenthos in Kõiguste Bay, NE Baltic Sea. Hydrobiologia, 554, 97–105.

Levring, T., Hoppe, H. A. & Schmid, O. J. 1969. Marine Algae: A Survey of Research and Utilization. Cram, De Gruyter & Co, Hamburg.

Lund, S. & Christensen, J. 1969. On the collection of Furcellaria in Denmark during the years 1961–1967. Proc. Int. Seaweed Symp., 6, 699–701.

Lüning, K. 1990. Seaweeds: Their Environment, Biogeography, and Ecophysiology. Wiley & Sons, New York.

Mäkinen, A., Kääriä, J. & Rajasilta, M. 1988. Factors controlling the occurrence of Furcellaria lumbricalis (Huds.) Lamour. and Phyllophora truncata (Pallas) Zinova in the upper littoral of the Archipelago of SW Finland. Kiel. Meeresforsh. (Sonderh.), 6, 140–146.

Martin, G. 2000. Phytobenthic communities of the Gulf of Riga and the inner sea of the West-Estonian Archipelago. Diss. Biol. Univ. Tartu, 64.

Martin, G. & Torn, K. 2004. Classification and description of phytobenthic communities in the waters of the West-Estonian Archipelago Sea. Hydrobiologia, 514, 151–162.

Martin, G., Paalme, T. & Torn, K. 2006a. Seasonality pattern of biomass accumulation in a drifting Furcellaria lumbricalis community in the waters of the West Estonian Archipelago, Baltic Sea. J. Appl. Phycol., 18, 557–563.

Martin, G., Paalme, T. & Torn, K. 2006b. Growth and production rates of loose-lying and attached forms of the red algae Furcellaria lumbricalis and Coccotylus truncatus in Kassari Bay, the West Estonian Archipelago Sea. Hydrobiologia, 554, 107–115.

Middelboe, A. L., Sand-Jensen, K. & Brodersen, K. 1997. Patterns of macroalgal distribution in the Kattegat-Baltic region. Phycologia, 36, 208–219.

Nielsen, R., Kristiansen, A., Mathiesen, L. & Mathiesen, H. (eds). 1995. Distributional index of the benthic macroalgae of the Baltic Sea area. Acta Bot. Fenn., 155.

Norton, T. A. & Mathieson, A. C. 1983. The biology of unattached seaweeds. Prog. Phycol. Res., 2, 333–386.

Novaczek, I. & Breeman, A. M. 1990. Thermal ecotypes of amphi-Atlantic algae. II. Cold-temperate species (Furcellaria lumbricalis and Polyides rotundus). Helgol. Meeresunters., 44, 475–485.

Orav-Kotta, H. & Kotta, J. 2004. Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia, 514, 79–85.

Paalme, T. & Kukk, H. 2003. Comparison of net primary production rates of Pilayella littoralis (L.) Kjellm. and other dominating macroalgal species in Kõiguste Bay, northeastern Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol., 52, 125–133.

Pedersen, M. & Snoeijs, P. 2001. Patterns of macroalgal diversity, community composition and long-term changes along the Swedish west coast. Hydrobiologia, 459, 83–102.

Pitkänen, H., Kiirikki, M., Savchuk, O., Räike, A., Korpinen, P. & Wulff, F. 2007. Searching efficient protection strategies for the eutrophicated Gulf of Finland: the combined use of 1D and 3D modeling in assessing long-term state scenarios with high spatial resolution. Ambio, 36, 272–279.

Pitkänen, H., Lehtoranta, J. & Peltonen, H. 2008. The Gulf of Finland. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 285–308. Springer, Berlin.

Pliński, M. & Florczyk, I. 1984. Changes in the phytobenthos resulting from the eutrophication of the Puck Bay. Limnologica, 15, 325–327.

Pratt, M. S. & Johnson, A. S. 2002. Strength, drag, and dislodgement of two competing intertidal algae from two wave exposures and four seasons. J. Exp. Mar. Biol. Ecol., 272, 71–101.

Reitalu, T., Paal, J. & Martin, G. 2002. Phytobenthic microcoenoses along Estonian exposed seashores. Proc. Estonian Acad. Sci. Biol. Ecol., 51, 257–276.

Rueness, J. & Tananger, T. 1984. Growth in culture of four red algae from Norway with potential for mariculture. Hydrobiologia, 116/117, 303–307.

Schramm, W. 1996. The Baltic Sea and its transition zones. In Marine Benthic Vegetation: Recent Changes and the Effect of Eutrophication (Schramm, W. & Nienhuis, P. H., eds), pp. 131–163. Springer, Berlin.

Snoeijs, P. 1999. Marine and brackish waters. In Swedish Plant Geography (Rydin, H., Snoeijs, P. & Diekmann, M., eds). Acta Phytogeogr. Suec., 84, 187–212.

Suursaar, Ü., Kullas, T. & Otsmann, M. 2002. A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea. Cont. Shelf Res., 22, 2001–2019.

Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R. & Tõnisson, H. 2008. Field observations on hydro­dynamic and coastal geomorphic processes of Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuar. Coast. Shelf Sci., 80, 31–41.

Trei, T. 1978. The physiognomy and structure of the sublittoral macrophyte communities in Kassary Bay (an area between the Isles of Hiiumaaa and Saaremaa). Kiel. Meeresforsch., 4, 117–121.

Trei, T. 1987. Phytobenthos in the waters of the Vilsandi State Nature Reserve. Proc. Acad. Sci. Estonian SSR. Biol., 36, 227–235.

Thomsen, M. S. & Wernberg, T. 2005. Minireview: What affects the forces required to break or dislodge macroalgae? Eur. J. Phycol., 40, 139–148.

Wærn, M. 1952. Rocky shore algae in the Öregrund Archipelago. Acta Phytogeogr. Suec., 30.

Westerbom, M., Mustonen, O. & Kilpi, M. 2008. Distribution of marginal population of Mytilus edulis: responses to biotic and abiotic processes at different spatial scales. Mar. Biol., 153, 1153–1164.doi:10.1007/s00227-007-0886-7

Back to Issue