eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology

Long-term changes in a northern Baltic macrophyte community; pp. 270–285

Full article in PDF format | doi: 10.3176/eco.2009.4.03

Anastasiia Kovtun, Kaire Torn, Jonne Kotta


Over the last 45 years significant changes in the floristic composition, distribution pattern, and dominance structure of phytobenthos were observed in Haapsalu Bay. Although the species composition of macroalgae did not change much over the course of this study, we observed notable changes in the community structure, i.e. algal shares. Some species, e.g. Tolypella nidifica, disappeared, other species such as Chara connivens and Chara baltica appeared for the first time in the study area. Besides, many prevailing species were relocated within the observed area over the course of the study. Another distinct feature of the recent years is that the vegetation had no dominant species. In general decadal variability exceeded yearly variability. There was no single abiotic variable that exerted major influence on phytobenthic communities. Instead we observed a combined effect of multiple environmental variables on phytobenthos communities. This study indicated that the changes in phytobenthic communities in Haapsalu Bay over the last 45 years were mainly due to large-scale weather patterns that determined regional salinity and ice conditions. Salinity sets the dominance pattern of phytobenthic species of freshwater and marine origin within communities. The intensity of ice scrape in turn created new unvegetated substrate and determined the overall phytobenthic cover in the study area. Within these large-scale patterns exposure, depth, and spatial salinity gradients contributed to the variability of small-scale patterns of macrophyte communities. Regional nutrient loading had weak effects on macrophyte communities, mainly in interactions with local abiotic variables and regional weather patterns.


Barnston, A. G. & Livezey, R. E. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev., 115, 1083–1126.

Bučas, M., Daunys, D. & Olenin, S. 2007. Overgrowth patterns of the red algae Furcellaria lumbricalis at an exposed Baltic Sea coast: the results of a remote underwater video data analysis. Estuar. Coast. Shelf Sci., 75, 308–316.

Cardoso, P. G., Raffaelli, D., Lillebø, A. I., Verdelhos, T. & Pardal, M. A. 2008. The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics. Estuar. Coast. Shelf Sci., 76, 553–565.

Clarke, K. R. & Gorley, R. N. 2006. PRIMER-E® (v6): User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UK.

Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser., 210, 223–253.

Elmgren, R. 2001. Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio, 30(4), 222–231.

Eriksson, B. K., Johansson, G. & Snoeijs, P. 1998. Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea. Eur. J. Phycol., 33(3), 241–249.

Eriksson, B. K., Johansson, G. & Snoeijs, P. 2002. Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast. J. Phycol., 38, 284–296.

Estonian Marine Institute. 2009. Rannikumere operatiivseire 2008. Tallinn.

Hänninen, J., Vuorinen, I. & Hjelt, P. 2000. Climatic factors in the Atlantic control the oceano­graphic and ecological changes in the Baltic Sea. Limnol. Oceanogr., 45, 703–710.

Hansen, J. P., Wikström, S. A. & Kautsky, L. 2008. Effects of water exchange and vegetation on the macroinvertebrate fauna composition of shallow land-uplift bays in the Baltic Sea. Estuar. Coast. Shelf Sci., 77, 535–547.

Herkül, K., Kotta, J., Kotta, I. & Orav-Kotta, H. 2006. Effects of physical disturbance, isolation and key macrozoobenthic species on community development, recolonisation and sedimentation processes. Oceanologia, 48S, 267–282.

Isæus, M. 2004. Factors structuring Fucus communities at open and complex coastlines in the Baltic Sea. PhD Thesis, Department of Botany, Stockholm University, Sweden.

Jaagus, J. 2006. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/1950–2003/2004 and their relationships to large-scale atmospheric circulation. Boreal Environ. Res., 11, 169–183.

Kautsky, H. 1988. Factors Structuring Phytobenthic Communities in the Baltic Sea. University of Stockholm, Stockholm.

Kautsky, H. 1989. Quantitative Distribution of Plant and Animal Communities of the Phytobenthic Zone in the Baltic Sea. Askö Laboratory, Stockholm.

Kiirikki, M. 1996. Dynamics of macroalgal vegetation in the northern Baltic Sea – evaluating the effects of weather and eutrophication. W. & A. de Nottbeck Foundation Sci. Rep., 12, 1–15.

Kiirikki, M. & Ruuskanen, A. 1996. How does Fucus vesiculosus L. survive ice scraping? Bot. Mar., 39, 133–139.

Kotta, J., Paalme, T., Martin, G. & Mäkinen, A. 2000. Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica. Intern. Rev. Hydrobiol., 85, 697–705.

Kotta, J., Jaanus, A. & Kotta, I. 2008a. Haapsalu and Maatsalu bays. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 245–258. Ecological Studies, 197. Springer, Berlin.

Kotta, J., Paalme, T., Püss, T., Herkül, K. & Kotta, I. 2008b. Contribution of scale-dependent environmental variability on the biomass patterns of drift algae and associated invertebrates in the Gulf of Riga, northern Baltic Sea. J. Mar. Syst., 74, 116–123.

Krause-Jensen, D., Sagert, S., Schubert, H. & Boström, C. 2008. Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecol. Indic., 8(5), 515–529.

Larsson, U. R., Elmgren, R. & Wulff, F. 1985. Eutrophication and the Baltic Sea: causes and consequences. Ambio, 14, 10–14.

Lehvo, A. & Bäck, S. 2001. Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquat. Conserv. Mar. Freshwater Ecosyst., 11, 11–18.

Martin, G. 2000. Phytobenthic communities of the Gulf of Riga and the inner sea of the West-Estonian archipelago. Diss. Biol. Univ. Tartu, 64. Tartu Univ. Press, Tartu.

Melzer, A. 1999. Aquatic macrophytes as tools for lake management. Hydrobiology, 395/396, 181–190.

Menge, B. A. & Sutherland, J. P. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat., 130, 730–757.

Middelboe, A. L. & Sand-Jensen, K. 2000. Long-term changes in macroalgal communities in a Danish estuary. Phycologia, 39, 245257.

Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C. & Stenseth, N. C. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia, 128, 1–14.

Rogers, J. C. 1984. The association between the North Atlantic oscillation and the southern oscillation in the Northern Hemisphere. Mon. Weather Rev., 112, 1999–2015.

Rönnberg, C. & Bonsdorff, E. 2004. Baltic Sea eutrophication: area-specific ecological con­sequences. Hydrobiologia, 514, 227–241.

Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S. & Schmedtje, U. 2004. Macro­phytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica, 34, 302–314.

Torn, K., Krause-Jensen, D. & Martin, G. 2006. Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquat. Bot., 84(1), 53–62.

Back to Issue