eesti teaduste
akadeemia kirjastus
Estonian Journal of Ecology
Mean weight and total biomass of zooplankton as a core indicator of biodiversity of the Marine Strategy Framework Directive: an example of the Gulf of Riga; pp. 232–241
PDF | doi: 10.3176/eco.2014.4.03

Mart Simm, Jonne Kotta, Holger Jänes

Zooplankton has been acknowledged as an intermediate link between bottom-up and top-town regulators, thereby indirectly describing trophic interactions in various food webs. We used zooplankton as a core indicator of biodiversity in the species-poor ecosystem of the northeastern Gulf of Riga by evaluating its role as a dietary component of pelagic fishes. Furthermore, seasonal and interannual variation of total abundance and biomass of zooplankton with mean individual weight of a zooplankter was analysed based on field data collected between 1957 and 2013. The dominating species in mesozooplankton were rotifers and copepods. Abundance and biomass estimates of zooplankton indicated the highest values during summer months (June: peak abundance; August: highest biomass). The dominating species during the peak abundance were rotifers and copepods; the biomass maximum was indicated by copepods (in June) and cladocerans (in July and August). When averaged over summers, the total zooplankton abundance was 156.2 ± 2.4 thousand ind/m3, biomass 62.9 ± 1.3 mgC/m3, and zooplankter individual weight 0.433 ± 0.004 µgC/ind. Our study showed that mean zooplankter weight and total zooplankton biomass correlated with the age-specific herring weight data. To conclude, the structure and stock size of the zooplankton community adequately indicated strong effects of zooplankton on fish size and growth.



Adrian, R., Wilhelm, S., and Gerten, D. 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology, 12, 652–661.

Alheit, J., Möllmann, C., Dutz, J., Kornilovs, G., Loewe, P., Mohrholz, V., and Wasmund, N. 2005. Synchronous regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science, 62, 1205–1215.

Arrhenius, F. 1996. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus (L.)) in the northern Baltic Sea. ICES Journal of Marine Science, 53, 701–712.

Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F., Finkel, Z. V., Kiørboe, T., and Ward, B. A. 2013. The biogeography of marine plankton traits. Ecology Letters, 6, 522–534.

Bernreuther, M., Schmidt, J., Stepputtis, D., and Temming, A. 2013. Vertically resolved prey selectivity and competition of Baltic herring Clupea harengus and sprat Sprattus sprattus. Marine Ecology Progress Series, 489, 177–195.

Brooks, L. and Dodson, I. 1965. Predation, body size and composition of the plankton. Science, 50, 28–35.

Brucet, S., Boix, D., Quintana, X. Q., Jensen, E., Nathansen, L. W., Trochine, C., Meerhoff, M., Gascon, S., and Jeppesen, E. 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography, 55, 1697–1711.

Casini, M., Cardinale, M., and Arrhenius, F. 2004. Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science, 61, 1267–1277.

Casini, M., Lövgren, J., Hjelm, J., Cardinale, M., Molinero, J.-C., and Kornilovs, G. 2008. Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 275, 1793–1801.

Casini, M., Blenckner, T., Möllmann, C., Gårdmark, A., Lindegren, M., Llope, M., Kornilovs, G., Plikshs, M., and Stenseth, N. C. 2014. Predator transitory spillover induces trophic cascades in ecological sinks. PNAS Early Edition. (accessed 01.04.2014).

Daewel, U., Hjøllo, S. S., Huret, M., Ji, R., Maar, M., Niiranen, S., Travers-Trolet, M., Peck, M. A., and van de Wolfshaar, K. E. 2014. Predation control of zooplankton dynamics: a review of observations and models. ICES Journal of Marine Science, 71, 254–271.

Díaz-Gil, C., Werner, M., Lövgren, O., Kaljuste, O., Grzyb, A., Margoński, P., and Casini, M. 2014. Spatio-temporal composition and dynamics of zooplankton in the Kalmar Sound (western Baltic Sea) in 2009–2010. Boreal Environment Research, 19, 323–335.

Dippner, J. W., Kornilovs, G., and Sidrevics, L. 2000. Long-term variability of mesozooplankton in the Central Baltic Sea. Journal of Marine Systems, 25, 23–31.

Flinkman, J., Vuorinen, I., and Aro, E. 1992. Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Canadian Journal of Fisheries and Aquatic Sciences, 49, 73–77.

Flinkman, J., Aro, E., Vuorinen, I., and Viitasalo, M. 1998. Changes in northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Marine Ecology Progress Series, 165, 127–136.

Gauthier, J., Prairie, Y. T., and Beisner, B. E. 2014. Thermocline deepening and mixing alter zooplankton phenology, biomass and body size in a whole-lake experiment. Freshwater Biology, 59, 998–1011.

Gorokhova, E., Lehtiniemi, M., Lesutiene, J., Strake, S., Uusitalo, L., Demereckiene, N., and Amid, C. 2013a. Zooplankton mean size and total abundance. HELCOM Core Indicator Report. Online. (accessed 01.04.2014).

Gorokhova, E., Lehtiniemi, M., and Motwani, N. H. 2013b. Trade-offs between predation risk and growth benefits in the copepod Eurytemora affinis with contrasting pigmentation. PLoS ONE, 8, e71385.

Grigorovich, I. A., MacIsaac, H. J., Rivier, I. K., Aladin, N. V., and Panov, V. E. 2000. Comparative biology of the predatory cladoceran Cercopagis pengoi from Lake Ontario, Baltic Sea and Caspian Sea. Archiv für Hydrobiologie, 149, 23–50.

Haberman, J. 1996. Contemporary state of the zooplankton in Lake Peipsi. Hydrobiologia, 338, 113–123.

Hansson, S. and Rudstam, L. G. 1990. Eutrophication and Baltic fish communities. Ambio, 19, 123–125.

Hansson, S., Dippner, J. W., and Larsson, U. 2010. Climate effects on zooplankton biomasses in a coastal Baltic Sea area. Boreal Environment Research, 15, 370–374.

HELCOM. 1988. Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinants. Baltic Sea Environment Proceedings, 27D, 1–161.

HELCOM MONAS. 2013. Zooplankton ring test 2007. Species identification, counting and biomass determination of a zooplankton sample of the Baltic Sea. Final report.

Hirst, A. G. and Kiørboe, T. 2002. Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series, 230, 195–209.

Hsieh, C. H., Sakai, Y., Ban, S., Ishikawa, K., Ishikawa, T., Ichise, S., Yamamura, N., and Kumagai, M. 2011. Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa. Biogeosciences, 8, 593–629.

ICES. 2013. Report of the ICES Advisory Committee 2013. ICES Advice, 8, 1–158.

Jeppesen, E., Nõges, P., Davidson, T. A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T. L., Sondergaard, M., Sayer, C., Laugaste, R., Johansson, L. S., Bjerring, R., and Amsinck, S. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676, 279–297.

Jurgensone, I., Carstensen, J., Ikauniece, A., and Kalveka, B. 2011. Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuaries and Coasts, 34, 1205–1219.

Kotta, J., Simm, M., Kotta, I., Kanošina, I., Kallaste, K., and Raid, T. 2004. Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga. Hydro­biologia, 514, 259–268.

Kotta, J., Kotta, I., Simm, M., and Põllupüü, M. 2009. Separate and interactive effects of eutrophication and climate variables on the ecosystem elements of the Gulf of Riga. Estuarine, Coastal and Shelf Science, 84, 509–518.

Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U., and Worm, B. 2014. Effects of sea surface warming on marine plankton. Ecology Letters,

Martinez, M., Espinosa, N., and Calliari, D. 2014. Incidence of dead copepods and factors associated with non-predatory mortality in the Río de la Plata estuary. Journal of Plankton Research, 36, 265–270.

Möllmann, C., Kornilovs, G., and Sidrevics, L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research, 22, 2015–2038.

Möllmann, C., Kornilovs, G., Fetter, M., and Köster, F. W. 2004. Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology, 65, 1563–1581.

Möllmann, C., Müller-Karulis, B., Kornilovs, G., and St John, M. A. 2008. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65, 302–310.

Ojaveer, H. and Lumberg, A. 1995. On the role of Cercopagis (Cercopagis) pengoi (Ostroumov)
in Pärnu Bay and the NE part of the Gulf of Riga ecosystem. Proceedings of the Estonian Academy of Sciences. Ecology, 5, 20–25.

Ojaveer, H., Kuhn, L. A., Barbiero, R. P., and Tuchman, M. L. 2001. Distribution and population characteristics of Cercopagis pengoi in Lake Ontario. Great Lakes Research, 27, 10–18.

Ojaveer, H., Simm, M., and Lankov, A. 2004. Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia, 522, 261–269.

Otto, S. A., Kornilovs, G., Llope, M., and Möllmann, C. 2014. Interactions among density, climate, and food web effects determine long-term life cycle dynamics of a key copepod. Marine Ecology Progress Series, 498, 73–84.

Pellikka, K. and Viljamaa, H. 1998. Eläinplankton Helsingin merialueella 1969–1996. Helsingin kaupungin ympäristökeskuksen julkaisuja, 12, 1–48.

Põllupüü, M., Simm, M., Põllumäe, A., and Ojaveer, H. 2008. Successful establishment of the Ponto-Caspian alien cladoceran Evadne anonyx G.O. Sars 1897 in low-salinity environment in the Baltic Sea. Journal of Plankton Research, 30, 777–782.

Rudstam, L. G., Aneer, G., and Hilden, M. 1994. Top-down control in the pelagic Baltic ecosystem. Dana, 10, 105–129.

Tang, K. W., Freund, C. S., and Schweitzer, C. L. 2006. Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes. Estuarine, Coastal and Shelf Science, 68, 499–508.

Viitasalo, M., Vuorinen, I., and Saesmaa, S. 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. Journal of Plankton Research, 17, 1857–1878.

Vuorinen, I., Hänninen, J., Viitasalo, M., Helminen, U., and Kuosa, H. 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science, 55, 767–774.


Back to Issue

Back issues