Three dams affect the flow of the lower Daugava River. The water reservoirs created by damming are relatively small with residence times from three to nine days. However, the water flow alteration is sufficient to cause a decrease in the phytoplankton biomass from an average of 246 to 96 mg m–3. The diatom community was dominated by single-cell and small (d = 5–10 µm) centric diatoms under the unaltered flow conditions. Under the altered flow conditions, chain-forming freshwater planktonic diatoms and singe-cell pennatae diatoms dominated the diatom community. The concentrations of dissolved silica varied between 51 and 121 µmol dm–3 and of biogenic silica from 1 to 12 µmol dm–3. In both cases the lowest values were observed during summer months. Furthermore, dissolved and biogenic silica concentrations were higher at stations representing unaltered flow conditions in comparison to those representing altered flow conditions during summer.
Andrushaitis, A., Seisuma, Z., Legzdina, M., and Lenshs, E. 1995. River load of eutrophying substances and heavy metals into the Gulf of Riga. In Ecosystem of the Gulf of Riga between 1920 and 1990 (Ojaveer, E., ed.), pp. 32–41. Estonian Academy Publishers, Tallinn.
Bormans, M. and Webster, I. T. 1999. Modelling the spatial and temporal variability of diatoms in the River Murray. Journal of Plankton Research, 21, 581–598.
http://dx.doi.org/10.1093/plankt/21.3.581
Donk, E. and Kilham, S. S. 1990. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms 1. Journal of Phycology, 26, 40–50.
http://dx.doi.org/10.1111/j.0022-3646.1990.00040.x
Cary, L., Alexandre, A., Meunier, J.-D., Boeglin, J.-L., and Braun, J.-J. 2005. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry, 74, 101–114.
http://dx.doi.org/10.1007/s10533-004-2945-1
Chessman, B. C. and Townsend, S. A. 2010. Differing effects of catchment land use on water chemistry explain contrasting behaviour of a diatom index in tropical northern and temperate southern Australia. Ecological Indicators, 10, 620–626.
http://dx.doi.org/10.1016/j.ecolind.2009.10.006
Clarson, J. S., Steinitz-Kannan, M., Patwardhan, V. S., Kannan, R., Hartig, R., Schloesser, L., Hamilton, D. W., Fusaro, J. K. A., and Beltz, R. 2009. Some observations of diatoms under turbulence. Silicon, 1, 79–90.
http://dx.doi.org/10.1007/s12633-009-9018-y
Conley, D. J. 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography, 42, 774–777.
http://dx.doi.org/10.4319/lo.1997.42.4.0774
Conley, D. J. 2002. Terrestrial ecosystems and the global biogeochemical cycle. Global Biogeochemical Cycles, 16(4), 1121.
http://dx.doi.org/10.1029/2002GB001894
Conley, D. J., Schelske, C. L., and Stoermer, E. F. 1993. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 101, 179–192.
http://dx.doi.org/10.3354/meps101179
Conley, D. J., Stålnacke, P., Pitkänen, H., and Wilander, A. 2000. The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnology and Oceanography, 45, 1850–1853.
http://dx.doi.org/10.4319/lo.2000.45.8.1850
Deksne, R., Škute, A., and Škute, R. 2009. The Daugava (Zapadnaja Dvina) zooplankton from Surozha (Belarus) to Dunava (Latvia). In Environment. Technology. Resources. Proceedings of the 7th International Scientific and Practical Conference. Volume II, pp. 87–92. Rēzeknes Augstskola, Rēzekne, RA Izdevniecība.
DeMaster, D. J. 1979. The marine budgets of silica and Si-32. PhD thesis. Yale University.
Dynesius, M. and Nilsson, C. 1994. Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science, 266, 753–762.
http://dx.doi.org/10.1126/science.266.5186.753
Edler, L. 1979. Phytoplankton succession in the Baltic Sea. Acta Botanica Fennica, 110, 75–78.
Egge, J. K. and Aksnes, D. L. 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series, 83, 281–289.
http://dx.doi.org/10.3354/meps083281
Ferris, J. A. and Lehman, T. J. 2007. Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Research, 41, 2551–2562.
http://dx.doi.org/10.1016/j.watres.2007.03.027
Friedl, G., Teodoru, C., and Wehrli, B. 2004. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry, 68, 21–32.
http://dx.doi.org/10.1023/B:BIOG.0000025738.67183.c0
Garnier, J., Leporcq, B., Sanchez, N., and Philippon, X. 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry, 47, 119–146.
http://dx.doi.org/10.1007/BF00994919
Hecky, R. E. and Kilham, P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.
http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0796
HELCOM, 2006a. Manual of Marine Monitoring Programme in the Combine Programme of Helcom. Part C, Annex C-4. Phytoplankton. Chlorophyll a. http://www.helcom.fi/ (accessed 17.07.2014).
HELCOM, 2006b. Manual of Marine Monitoring Programme in the Combine Programme of Helcom. Part C, Annex C-6. Phytoplankton Species Composition, Abundance and Biomass. http://www.helcom.fi/ (accessed 17.07.2014).
Humborg, C., Conley, D. J., Rahm, L., Wulff, F., Cociasu, A., and Ittekkot, V. 2000. Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50.
http://dx.doi.org/10.1579/0044-7447-29.1.45
Humborg, C., Pastuszak, M., Aigars, J., Siegmund, H., Mörth, C.-M., and Ittekkot, V. 2006. Decreased silica land–sea fluxes through damming in the Baltic Sea catchment – significance of particle trapping and hydrobiological alterations. Biogeochemistry, 77, 265–281.
http://dx.doi.org/10.1007/s10533-005-1533-3
Jurgensone, I. and Aigars, J. 2012. Bioavailability of riverine dissolved matter to phytoplankton in the marine coastal waters. Estuarine, Coastal and Shelf Science, 107, 97–104.
http://dx.doi.org/10.1016/j.ecss.2012.05.005
Kiss, K. T. and Genkal, S. I. 1993. Winter blooms of centric diatoms in the River Danube and its side-arms near Budapest (Hungary). Hydrobiologia, 269/270, 317–325.
http://dx.doi.org/10.1007/BF00028030
Koroleff, F. 1983. Determination of silicon. In Methods of Seawater Analyses (Grasshoff, K., Ehrhardt, M., and Kremling, K., eds), pp. 174–183. Verlag Chemie, Weinheim.
Mitrovic, S. M., Chessman, B. C., Davie, A., Avery, E. L., and Ryan, N. 2008. Development of blooms of Cyclotella meneghiniana and Nitzschia spp. (Bacillariophyceae) in a shallow river and estimation of effective suppression flows. Hydrobiologia, 596, 173–185.
http://dx.doi.org/10.1007/s10750-007-9094-1
Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wassmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Jaanus, A., Kokkonen, P., Ledaine, I., and Niemkiewicz, E. 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings, 106, 1–144.
Pastuszak, M., Stålnacke, P., Pawlikowski, K., and Witek, Z. 2012. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988–2008). Journal of Marine Systems, 94, 157–173.
http://dx.doi.org/10.1016/j.jmarsys.2011.11.017
Reynolds, C. S. 1995. River plankton: the paradigm regained. In The Ecological Basis for River Management (Harper, D. M. and Ferguson, A. J. D., eds), pp. 161–173. John Wiley & Sons.
Reynolds, C. S. and Descy, J. P. 1996. The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie Supplement, 113, 161–187.
Schindler, D. 1977. Evolution of phosphorus limitation in lakes. Science, 195, 260–262.
http://dx.doi.org/10.1126/science.195.4275.260
Sherman, B. S. and Webster, I. T. 1998. Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool. Limnology and Oceanography, 43, 1902–1915.
Sicko-Goad, L. M., Schelske, C. L., and Stoermer, E. F. 1984. Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnology and Oceanography, 29, 1170–1178.
http://dx.doi.org/10.4319/lo.1984.29.6.1170
Strickland, J. D. H. 1966. Measuring the production of marine phytoplankton. Bulletin, No. 22. Fisheries Research Board of Canada, Ottawa, Canada.
Tréguer, P., Nelson, D. M., van Bennekom, A. J., De-Master, D. J., Leynaert, A., and Quéguiner, B. 1995. The silica balance in the world ocean: a reestimate. Science, 268, 375–379.
http://dx.doi.org/10.1126/science.268.5209.375
Urrea, G. and Sabater, S. 2009. Epilithic diatom assemblages and their relationship to environmental characteristics in an agricultural watershed (Guadiana River, SW Spain). Ecological Indicators, 9, 693–703.
http://dx.doi.org/10.1016/j.ecolind.2008.09.002
Utermöhl, H. 1958. Zur Vervollkommung der qualitativen Phytoplankton-Methodik. Mitteilungen – Internationale Vereinigung für Theoretische und Angewandte Limnologie, 9, 1–38.
Vandonk, E. and Kilham, S. S. 1990. Temperature effects on silicon-limited and phosphorus-limited growth and competitive interactions among three diatoms. Journal of Phycology, 26, 40–50.
http://dx.doi.org/10.1111/j.0022-3646.1990.00040.x
http://dx.doi.org/10.1016/j.watres.2012.01.051