Oxidation–reduction reactions play a key role in ecologically important biogeochemical processes in soil and influence soil chemical, biochemical, and biological properties. The objective of this study was to compare the effect of a forest island located on two kinds of soils on the concentrations of iron forms and peroxidase activity participating in oxidation–reduction processes. The investigations were carried out in the Agroecological Landscape Park in Turew (40 km south of Poznań, Western Polish Lowland, 16°45¢E, 52°01¢N). The subject of the study was a palace park, which can be considered as a forest island. Part of this forest island is located on mineral soil and another part on mineral–organic soil. Our results showed that the flow of groundwater was accompanied by an increase in peroxidase activity, total iron concentration, and Fe(II) and Fe(III) ions in the mineral soils in most periods of sampling. However, an increase of peroxidase activity and a decrease of total iron concentration and Fe(II) and Fe(III) ions accompanying the flow of groundwater were observed in the mineral–organic soils.
Bartha, R. & Bordeleau, L. 1969. Cell-free peroxidases in soil. Soil Biology & Biochemistry, 1, 139–143.
http://dx.doi.org/10.1016/0038-0717(69)90004-2
Bartha, R., Linke, H. A. B. & Pramer, D. 1968. Pesticide transformations: production of chloroazobenzenes from chloroanilines. Science, 161, 582–583.
http://dx.doi.org/10.1126/science.161.3841.582
Bertini, I., Cremonini, M. A., Ferretti, S., Lozzi, I., Luchinat, C. & Viezzoli, M. S. 1996. Arene hydroxylases: metalloenzymes catalyzing dioxygenation of aromatic compounds. Coordination Chemistry Reviews, 151, 145–160.
http://dx.doi.org/10.1016/S0010-8545(96)90203-9
Bollag, J. M., Chen, Ch. M., Sarkar, J. M. & Loll, M. 1987. Extraction and purification of a peroxidase from soil. Soil Biology & Biochemistry, 19(1), 61–67.
http://dx.doi.org/10.1016/0038-0717(87)90126-X
Bordeleau, L. M. & Bartha, R. 1972. Biochemical transformations of herbicide-derived anilines in culture medium and in soil. Canadian Journal of Microbiology, 18, 1857–1864.
http://dx.doi.org/10.1139/m72-290
Cervantes, F. J., de Bok, F. A. M., Duong-Dac, T., Stams, A. J. M., Lettinga, G. & Field, J. A. 2002. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environmental Microbiology, 4, 51–57.
http://dx.doi.org/10.1046/j.1462-2920.2002.00258.x
Chen, Y. 1996. Organic matter reactions involving micronutrients in soils and their effect on plants. In Humic Substances in Terrestrial Ecosystems (Piccolo, A., ed.), pp. 507–529. Elsevier, Oxford.
http://dx.doi.org/10.1016/B978-044481516-3/50014-1
Chen, J., Gu, B., Royer, R. A. & Burgos, W. D. 2003. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment, 307, 167–178.
http://dx.doi.org/10.1016/S0048-9697(02)00538-7
Chen, J. L., Zhuo, S. J., Wu, Y. Q., Fang, F., Li, L. & Zhu, Ch. Q. 2006. High selective determination iron(II) by its enhancement effect on the fluorescence of pyrene-tetramethylpiperidinyl (TEMPO) as a spin fluorescence probe. Spectrochimica Acta Part A, 63, 438–443.
http://dx.doi.org/10.1016/j.saa.2005.04.057
Choinowski, T., Blodig, W., Winterhalter, K. H. & Piontek, K. 1999. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxyl group on the Cb of tryptophan 171: a novel radical site formed during the redox cycle. Journal of Molecular Biology, 286, 809–827.
http://dx.doi.org/10.1006/jmbi.1998.2507
Criquet, S., Farnet, A. M., Tagger, S. & Le Petit, J. 2000. Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biology & Biochemistry, 32, 1505–1513.
http://dx.doi.org/10.1016/S0038-0717(00)00027-4
Dec, J., Haider, K. & Bollag, J. M. 2001. Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Science, 166, 660–671.
http://dx.doi.org/10.1097/00010694-200110000-00002
Dec, J., Haider, K. & Bollag, J. M. 2003. Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere, 52, 549–556.
http://dx.doi.org/10.1016/S0045-6535(03)00236-4
Fimmen, R. L., Cory, R. M., Chin, Y. P., Trouts, T. D. & McKnight, D. M. 2007. Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta, 71, 3003–3015.
http://dx.doi.org/10.1016/j.gca.2007.04.009
Galstyan, A. S. 1958. Determination of comparative activity of peroxidase and polyphenol oxidase in soil. Doklady Akademii Nauk Armyanskoj SSR, 26, 285–288 (in Russian).
Gliński, J., Sahr, K., Stępniewska, Z. & Brzezińska, M. 1996. Changes of redox and pH conditions in flooded soil amended with glucose and manganese oxide under laboratory conditions. Zeitschrift für Pflanzenernährung und Bodenkunde, 155, 13–17.
http://dx.doi.org/10.1002/jpln.19921550104
Goswami, D. C. & Kalita, H. 1988. Rapid determination of iron in water by modified thiocyanate method. Defence Science Journal, 38(2), 177–182.
Grybos, M., Davranche, M., Gruau, G. & Petitjean, P. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reductions? Journal of Colloid and Interface Science, 314, 490–501.
http://dx.doi.org/10.1016/j.jcis.2007.04.062
Harrison, R. M. 1992. Understanding Our Environment: An Introduction to Environmental Chemistry and Pollution. The Royal Society of Chemistry, University of Birmingham.
Jansen, B., Nierop, K. G. J. & Verstraten, J. M. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe(II), Fe(III) and Al(III) in soil solutions determined by diffusive gradients in thin films. Analytica Chimica Acta, 454, 259–270.
http://dx.doi.org/10.1016/S0003-2670(01)01551-3
Jansen, B., Nierop, K. G. J. & Verstraten, J. M. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma, 113, 323–340.
http://dx.doi.org/10.1016/S0016-7061(02)00368-3
Kerstetter, R. E., Zepp, R. G. & Carreira, L. H. 1998. Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter. Biogeochemistry, 42, 311–323.
http://dx.doi.org/10.1023/A:1005982226333
Kozlov, K. 1964. Enzymatic activity of rhizosphere and soils in the East Siberia area. Folia Microbiologica (Praha), 9, 145–149.
http://dx.doi.org/10.1007/BF02873999
Lindsay, W. L. & Schwab, A. P. 1982. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5, 821–840.
http://dx.doi.org/10.1080/01904168209363012
Lovley, D. R. & Anderson, R. T. 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8, 77–88.
http://dx.doi.org/10.1007/PL00010974
Marczenko, Z., Balcerzak, M. & Kloczko, E. 2000. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. Elsevier.
Meysner, T., Maryganova, V. & Szajdak, L. 2006. Transformation of nitrogen compounds in the mucous soils of a forest island. Acta Agrophysica, 7, 447–452.
Minczewski, L. & Marczenko, Z. 1976. Analytic Chemistry. PWN, Warszawa (in Polish).
Moghimi, A., Tate, M. E. & Oades, J. M. 1978. Characterization of rhizosphere products, especially 2-ketogluconic acid. Soil Biology & Biochemistry, 10, 283–287.
http://dx.doi.org/10.1016/0038-0717(78)90023-8
Nicell, J. A. & Wright, H. 1997. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme and Microbial Technology, 21, 302–310.
http://dx.doi.org/10.1016/S0141-0229(97)00001-X
Pedersen, H. D., Postma, D., Jakobsen, R. & Larsen, O. 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica Acta, 69, 3967–3977.
http://dx.doi.org/10.1016/j.gca.2005.03.016
Peretyazhko, T. & Sposito, G. 2006. Reducing capacity of terrestrial humin acids. Geoderma, 137, 140–146.
http://dx.doi.org/10.1016/j.geoderma.2006.08.004
Reuter, R. J. & Bell, J. C. 2001. Soils and hydrology of a wet-sandy catena in east-central Minnesota. Soil Science Society of America Journal, 65, 1559–1569.
http://dx.doi.org/10.2136/sssaj2001.6551559x
Ryszkowski, L. & Bartoszewicz, A. 1989. Impact of agricultural landscape structure on cycling of inorganic nutrients. In Ecology of Arable Land (Clarholm, M., Bergström, L. & Dordrecht, L., eds), pp. 241–246. Kluwer Academic Publishing.
Ryszkowski, L., Bartoszewicz, A. & Kędziora, A. 1999. Management of master fluxes by biogeochemical barriers at the agricultural landscape level. Landscape Ecology, 14, 479–492.
http://dx.doi.org/10.1023/A:1008052728417
Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32, 2984–2989.
http://dx.doi.org/10.1021/es980272q
Smolander, A. & Kitunen, V. 2002. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology & Biochemistry, 34, 651–660.
http://dx.doi.org/10.1016/S0038-0717(01)00227-9
Stevenson, F. J. 1982. Humus Chemistry Genesis, Composition, Reactions. A Wiley-Intercience Publication, USA.
Straub, K. L., Benz, M. & Schink, B. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186.
http://dx.doi.org/10.1111/j.1574-6941.2001.tb00768.x
Szajdak, L., Maryganova, V. & Meysner, T. 2002a. Function of a shelterbelt as a biogeochemical barrier in the agicultural landscape. Acta Agrophysica, 67, 263–273.
Szajdak, L., Maryganova, V., Meysner, T. & Tychinskaja, L. 2002b. Effect of shelterbelt on two kinds of soils on the transformation of organic matter. Environment International, 28, 383–392.
http://dx.doi.org/10.1016/S0160-4120(02)00059-4
Tan, K. H. 2003. Chemical processes. In Handbook of Processes and Modeling in the Soil–Plant System (Benbi, D. K. & Nieder, R., eds), pp. 27–56. Haworth Press, New York.
Tarafder, P. K. & Thakur, R. 2005. Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples. Microchemical Journal, 80, 39–43.
http://dx.doi.org/10.1016/j.microc.2004.09.004
http://dx.doi.org/10.1080/10826079808001239