Studies of the properties of soil organic matter are essential for understanding the humification reactions and soil diagenesis processes. The aim of this study is to analyse properties of peat and peat humic acids as well as factors influencing their variability. Humic acids isolated from an ombrotrophic bog peat profile were used as study objects. Relations among peat age, decomposition and humification degree, botanical composition, and properties of peat humic acids (elemental, functional composition, spectral characteristics) were studied. The variability of peat properties was found to be less significant than the differences in the properties of peat-forming living matter, which indicates the dominant impact of humification processes on the properties of peat. Correspondingly, the composition of peat humic acids was insignificantly affected by the differences in the composition of the precursor living organic material.
Anderson, H. & Hepburn, A. 1986. Variation of humic substances within peat profile. In Peat and Water (Fuchsman, C. H., ed.), pp. 177–194. Academic Press, New York.
Blackford, J. J. & Chambers, F. M. 1993. Determining the degree of peat decomposition for peat-based paleoclimatic studies. International Peat Journal, 5, 7–24.
Borgmark, A. 2005a. Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis. Holocene, 15, 387–395.
http://dx.doi.org/10.1191/0959683605hl816rp
Borgmark, A. 2005b. The Colour of Climate: Changes in Peat Decomposition as a Proxy for Climate Change – a Study of Raised Bogs in South-central Sweden. PhD thesis, Stockholm University, Stockholm.
Brown, P. A., Gill, S. A. & Allen, S. J. 2000. Metal removal from wastewater using peat. Water Resources, 34, 3907–3916.
Caseldine, C. J., Baker, A., Charman, D. J. & Hendon, D. A. 2000. Comparative study of optical properties of NaOH peat extracts: implications for humification studies. Holocene, 10, 649–658.
http://dx.doi.org/10.1191/095968300672976760
Chapman, S. J., Campbell, C. D., Fraser, A. R. & Puri, G. 2001. FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biology and Biochemistry, 33, 1193–1200.
http://dx.doi.org/10.1016/S0038-0717(01)00023-2
Chen, Y., Senesi, N. & Schnitzer, M. 1977. Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41, 352–358.
http://dx.doi.org/10.2136/sssaj1977.03615995004100020037x
Chin, Y., Aiken, G. R. & Danielsen, K. M. 1997. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environmental Science and Technology, 31, 1630–1635.
http://dx.doi.org/10.1021/es960404k
Cocozza, C., D’Orazio, V., Miano, T. M. & Shotyk, W. 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT–IR, and comparison with physical properties. Organic Geochemistry, 34, 49–60.
http://dx.doi.org/10.1016/S0146-6380(02)00208-5
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosenthal, Y. & Tan, K. H. 2003. Humic Matter in Soil and the Environment: Principles and Controversies. Marcel Dekker, New York.
Francioso, O., Ciavatta, C., Montecchio, D., Tugnoli, V., Sanchez-Cortes, S. & Gessa, C. 2003. Quantitative estimation of peat, brown coal and lignite humic acids using chemical parameters, 1H-NMR and DTA analyses. Bioresource Technology, 88, 189–195.
http://dx.doi.org/10.1016/S0960-8524(03)00004-X
Garnier-Sillam, E., Hariyento, S. & Bourezgui, Y. 1999. Humic substances in peats. Analysis, 27(5), 405–408.
http://dx.doi.org/10.1051/analusis:1999270405
Ghaly, R. A., Pyke, J. B., Ghaly, A. E. & Ugursal, V. I. 1999. Remediation of diesel-oil-contaminated soil using peat. Energy sources, A: recovery, utilization, and environmental effects. Chemosphere, 21, 785–799.
Houghton, R. A. 2003. The contemporary carbon cycle. In Treatise on Geochemistry (Turekian, K. K. & Holland, H. D., eds), Vol. 8, pp. 473–513. Elsevier, Dordrecht.
http://dx.doi.org/10.1016/B0-08-043751-6/08168-8
Lishtvan, I. I. & Korol, N. T. 1975. Basic Properties of Peat and Methods for Their Determination. Nauka i Tekhnika, Minsk (in Russian).
Milori, D. M. B. P., Neto, L. M., Bayer, C., Mielniczuk, J. & Bagnato, V. S. 2002. Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science, 167, 739–749.
http://dx.doi.org/10.1097/00010694-200211000-00004
Qiamg, T., Xiaoquan, S. & Zheming, N. 1993. Comparative characteristic studies on soil and commercial humic acids. Fresenius Journal of Analytical Chemistry, 347, 330–336.
http://dx.doi.org/10.1007/BF00323816
Tan, K. H. 2005. Soil Sampling, Preparation, and Analysis. Second Edition, Taylor & Francis Group, New York.
Uyguner, C. S., Hellriegel, C., Otto, W. & Larive, C. K. 2004. Characterization of humic substances: implications for trihalomethane formation. Analytical and Bioanalytical Chemistry, 378, 1579–1586.
http://dx.doi.org/10.1007/s00216-003-2451-7
Van Krevelen, D. W. 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–284.
Yamaguchi, T., Hayashi, H., Yazawa, Y., Uomori, M., Yazaki, F. & Bambalov, N. N. 1998. Comparison of basic characteristics of humic acids extracted from peats and other sources. International Peat Journal, 8, 87–94.
Yeloff, D. & Mauquoy, D. 2006. The influence of vegetation composition on peat humification: implications for paleoclimatic studies. Boreas, 35, 662–673.
http://dx.doi.org/10.1111/j.1502-3885.2006.tb01172.x
Zaccone, C., Cocozza, C., Cheburkin, A. K., Shotyk, W. & Miano, T. M. 2007a. Enrichment and depletion of major and trace elements, and radionuclides in ombrotrophic raw peat and corresponding humic acids. Geoderma, 141, 235–246.
http://dx.doi.org/10.1016/j.geoderma.2007.06.007
Zaccone, C., Miano, T. M. & Shotyk, W. 2007b. Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry, 38, 151–160.
http://dx.doi.org/10.1016/j.orggeochem.2006.06.023
Zaccone, C., Cocozza, C., Cheburkin, A. K., Shotyk, W. & Miano, T. M. 2008. Distribution of As, Cr, Ni, Rb, Ti and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile (NW Switzerland). Applied Geochemistry, 23, 25–33.
http://dx.doi.org/10.1016/j.apgeochem.2007.09.002
http://dx.doi.org/10.1016/S0003-2670(01)01428-3