ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Scale-specific effects of environmental variables on benthic macrophyte and invertebrate communities in the Vaindloo area, the central Gulf of Finland; pp. 4–17
PDF | doi: 10.3176/eco.2011.1.02

Authors
Ivan Kuprijanov, Jonne Kotta, Merli Pärnoja, Kristjan Herkül, Priit Kersen
Abstract

We quantified the relative importance of scale-specific variability of macroalgal and benthic invertebrate communities in the Vaindloo area, the central Gulf of Finland. Macrophyte communities had a clear variability minimum at 8 km spatial scale. In contrast to macrophytes, the scale-specific variability of benthic invertebrate communities was small with no clear variability peak or minimum. The spatial distribution patterns of macrophytes and benthic invertebrates did not vary with regard to the species composition and dominance structure of communities. Among environmental variables the coverage of boulders and depth contributed most to the variability of the species composition and biomass dominance structure of macrophytes as well as of the species composition of benthic invertebrates. In addition to these environmental factors, the variability in the abundance and biomass dominance structure of benthic invertebrates was described by coastal slope, exposure, and cover of sediment size fractions other than boulders. The study suggests that the scale-specific variability of marine communities is complex and differs notably among different ecosystem elements. The variability of macrophytes and benthic invertebrate communities was also described by the abiotic environment operating at multiple spatial scales.

References

Anon. 2004. ArcGIS 9: Getting Started with ArcGIS. ESRI.

Bonsdorff, E. & Pearson, T. H. 1999. Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Aust. J. Ecol., 24, 312–326.
doi:10.1046/j.1442-9993.1999.00986.x

Clarke, K. R. & Gorley, R. N. 2006. Primer v6. User Manual/Tutorial. Primer-E, Plymouth, UK.

Clarke, K. R., Somerfield, P. J. & Chapman, M. G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol., 330, 55–80.
doi:10.1016/j.jembe.2005.12.017

Dethier, M. N. & Schoch, G. C. 2005. The consequences of scale: assessing the distribution of benthic populations in a complex estuarine fjord. Estuar. Coast. Shelf Sci., 62, 253–270.
doi:10.1016/j.ecss.2004.08.021

Eriksson, B. K. & Bergström, L. 2005. Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuar. Coast. Shelf Sci., 62, 109–117.
doi:10.1016/j.ecss.2004.08.009

Golubkov, S. M., Bäck, S., Nikulina, V. N., Orlova, M. I., Anokhina, L. E. & Umnova, L. P. 2003. Effects of eutrophication and invasion of Dreissena polymorpha in the coastal zone of the eastern Gulf of Finland. Proc. Estonian Acad. Sci. Biol. Ecol., 52, 218–235.

Gray, J. S. 2002. Species richness of marine soft sediments. Mar. Ecol. Prog. Ser., 244, 285–297.
doi:10.3354/meps244285

Greig-Smith, P. 1979. Pattern in vegetation. J. Ecol., 67(3), 755–779.
doi:10.2307/2259213

Grömping, U. 2006. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw., 17, 1–27.

Grömping, U. 2007. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat., 61, 139–147.
doi:10.1198/000313007X188252

HELCOM. 2007. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. http://www.helcom.fi/groups/monas/CombineManual.htm (accessed 2010-02-20).

Herkül, K., Kotta, J., Kotta, I. & Orav-Kotta, H. 2006. Effects of physical disturbance, isolation and key macrozoobenthic species on community development, recolonisation and sedimentation processes. Oceanologia, 48, 267–282.

Hewitt, J. E. & Thrush, S. F. 2009. Reconciling the influence of global climate phenomena on macrofaunal temporal dynamics at a variety of spatial scales. Glob. Change Biol., 15, 1911–1929.
doi:10.1111/j.1365-2486.2008.01825.x

Ignatius, H., Axberg, S., Niemisto, L. & Winterhalter, B. 1981. Quaternary geology of the Baltic Sea. In The Baltic Sea (Voipio, A., ed.), pp. 54–103. Elsevier, Amsterdam.

Isæus, M. 2004. Factors structuring Fucus communities at open and complex coastlines in the Baltic Sea. PhD Thesis, Deptartment of Botany, Stockholm University, Sweden.

Kautsky, H. 1993. Quantitative distribution of sublittoral plant and animal communities along the Baltic Sea gradient. In Biology and Ecology of Shallow Coastal Waters (Elftheriou, A., ed.), pp. 23–30. Olsen and Olsen, Fredensborg.

Kautsky, H. & van der Maarel, E. 1990. Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea. Mar. Ecol. Prog. Ser., 60, 169–184.
doi:10.3354/meps060169

Kautsky, H., Martin, G., Mäkinen, A., Borgiel, M., Vahteri, P. & Rissanen, J. 1999. Structure of phytobenthic and associated animal communities in the Gulf of Riga. Hydrobiologia, 393, 191–200.
doi:10.1023/A:1003510105274

Kotta, J. & Möller, T. 2009. Important scales of distribution patterns of benthic species in the Gretagrund area, the central Gulf of Riga. Estonian J. Ecol., 58, 259–269.
doi:10.3176/eco.2009.4.02

Kotta, J. & Witman, J. 2009. Regional-scale patterns. In Marine Hard Bottom Communities (Wahl, M., ed.). Ecological Studies, 206, 89–99. Springer-Verlag, Berlin, Heidelberg.

Kotta, J., Simm, M., Kotta, I., Kanošina, I., Kallaste, K. & Raid, T. 2004. Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga. Hydrobiologia, 514, 259–268.
doi:10.1023/B:hydr.0000018224.56324.44

Kotta, J., Lauringson, V. & Kotta, I. 2007. Response of zoobenthic communities to changing eutrophication in the northern Baltic Sea. Hydrobiologia, 580, 97–108.
doi:10.1007/s10750-006-0462-z

Kotta, J., Paalme, T., Püss, T., Herkül, K. & Kotta, I. 2008. Contribution of scale-dependent environmental variability on the biomass patterns of drift algae and associated invertebrates in the Gulf of Riga, northern Baltic Sea. J. Mar. Syst., 74, S116–S123.
doi:10.1016/j.jmarsys.2008.03.030

Lehtoranta, J. 2003. Dynamics of sediment phosphorus in the brackish Gulf of Finland. Monogr. Boreal Environ. Res., 24, 1–58.

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D. & Wardle, D. A. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804–808.
doi:10.1126/science.1064088

Middelboe, A. L., Sand-Jensen, K. & Brodersen, K. 1997. Patterns of macroalgal distribution in the Kattegat-Baltic region. Phycologia, 36, 208–219.
doi:10.2216/i0031-8884-36-3-208.1

Platt, T. & Denman, K. L. 1975. Spectral analysis in ecology. Annu. Rev. Ecol. Syst., 6, 189–210.
doi:10.1146/annurev.es.06.110175.001201

Pitkänen, H., Lehtoranta, J. & Räike, A. 2001. Internal nutrient fluxes counteract decreases in external load: the case of the estuarial Eastern Gulf of Finland, Baltic Sea. Ambio, 30, 195–201.
doi:10.1639/0044-7447(2001)030[0195:INFCDI]2.0.CO;2

Pitkänen, H., Kiirikki, M., Savchuk, O., Räike, A., Korpinen, P. & Wulff, F. 2007. Searching efficient protection strategies for the eutrophicated Gulf of Finland: the combined use of 1D and 3D modeling in assessing long-term state scenarios with high spatial resolution. Ambio, 36, 272–279.
doi:10.1579/0044-7447(2007)36[272:SEPSFT]2.0.CO;2

Pitkänen, H., Lehtoranta, J. & Peltonen, H. 2008. The Gulf of Finland. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 285–308. Springer, Berlin.
doi:10.1007/978-3-540-73524-3_13

Põllumäe, A. & Kotta, J. 2007. Factors affecting zooplankton community of the Gulf of Finland, with respect to native and introduced predatory cladoceran interactions. Oceanologia, 49, 277–290.

Põllumäe, A., Kotta, J. & Leisk, Ü. 2009. Scale-dependent effects of nutrient loads and climatic conditions on benthic and pelagic communities in the Gulf of Finland. Mar. Ecol., 30, 20–32.
doi:10.1111/j.1439-0485.2009.00304.x

Russell, G. 1985. Recent evolutionary changes in the algae of the Baltic Sea. J. Brit. Phycol., 20, 87–104.
doi:10.1080/00071618500650111

Steele, J. H. & Henderson, E. W. 1994. Coupling between physical and biological scales. Phil. Trans. R. Soc. Lond. B, 343, 5–9.
doi:10.1098/rstb.1994.0001

Thrush, S., Hewitt, J., Herman, P. & Ysebaert, T. 2005. Multi-scale analysis of species–environment relationships. Mar. Ecol. Prog. Ser., 302, 13–26.
doi:10.3354/meps302013

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302.
doi:10.1126/science.277.5330.1300

Waern, M. 1952. Rocky-shore algae in the Oregrund archipelago. Acta Phytogeogr. Suec., 30, 1–298.

Wallentinus, I. 1991. The Baltic Sea gradient. In Intertidal and Littoral Ecosystems. Ecosystems of the World. Vol. 24 (Mathieson, A. C. & Nienhuis, P. H., eds), pp. 83–108. Elsevier, Amsterdam.

Whittaker, R. J., Willis, K. J. & Field, R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr., 28, 453–470.
doi:10.1046/j.1365-2699.2001.00563.x

Witman, J. D. & Roy, K. 2009. Marine Macroecology. The University of Chicago Press, Chicago.

Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge University Press, Cambridge.

Wootton, J. T. 2001. Local interactions predict large-scale pattern in empirically derived cellular automata. Nature, 413, 841–844.
doi:10.1038/35101595

Back to Issue

Back issues