ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Linking diatom community dynamics to changes in terrestrial vegetation: a palaeolimnological case study of Lake Ķūži, Vidzeme Heights (Central Latvia); pp. 259–280
PDF | doi: 10.3176/eco.2010.4.02

Authors
Liisa Puusepp, Mihkel Kangur
Abstract
Diatom and pollen records from the deepest part of Lake Ķūži (Vidzeme Heights, Central Latvia) show the history of the lake and its ecosystem responses to changes in the surrounding vegetation during the Holocene. Principal Component Analysis (PCA) was used to compare the timing of the changes in the diatom and pollen assemblages. We found that major changes in the diatom record were contemporaneous with those in the pollen records. At the beginning of the Early Holocene, when the lake was receiving high inputs of mineral matter, no diatoms were found. Around 11 000 cal. BP, when the upland vegetation became established, periphytic diatom taxa (mostly Fragilaria species) prevailed. The Mid-Holocene period (9000–2000 cal. BP) was characterized by Cyclotella spp. and Tabellaria flocculosa, indicating long ice-free seasons and a rather high water level. Picea was a major tree species around the lake 5300–2500 cal. BP and it facilitated acidification of the lake water via the acidification of the soil, indicated by the increase in the acidophilous diatoms Eunotia spp. and T. flocculosa. The Late Holocene (2000–0 cal. BP) is characterized by anthropogenic impacts on both the upland vegetation and lake ecosystem, depicted by the simultaneous increase in Aulacoseira spp., herbaceous pollen such as Poaceae, Secale, and Rumex, and charcoal fragments. With pollen taxa used as predictor and diatom taxa as response variables, Redundancy Analysis (RDA) provided a statistically significant model that explains the variation in the diatom data. Our results show that the diatoms responded strongly to the catchment-driven changes around Lake Ķūži during the entire Holocene.
References

Āboltiņš, O. 1997. Piebalgas pauguraine. In Latvijas daba. Enciklopedija (Kavacis, G., ed.), pp. 115–117. Riga (in Latvian).

Ampel, L., Wohlfarth, B., Risberg, J., Veres, D., Leng, M. & Kaislahti Tillman, P. 2009. Diatom community dynamics during abrupt climate change: the response of lacustrine diatoms to Dansgaard-Oeschger cycles during the last glacial period. J. Paleolimnol.

Anderson, N. J. 2000. Diatoms, temperature and climatic change. Eur. J. Phycol.,35, 307–314.
doi:10.1017/S0967026200002857

Battarbee, R. W. & Kneen, M. J. 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr., 27, 184–188.
doi:10.4319/lo.1982.27.1.0184

Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G. & Bennion, H. 2001. Diatoms. In Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal and Siliceous Indicators (Smol, J. P., Birks, H. J. B. & Last, W. M., eds), pp. 155–202. Kluwer Academic Publishers, Dordrecht.

Bennion, H. 1995. Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Res., 10, 1–19.

Bennion, H. & Simpson, G. L. 2010. The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J. Paleolimnol.,
doi: 10.1007/s10933-010-9422-8.

Bigler, C., Hall, R. I. & Renberg, I. 2000. A diatom-training set for palaeoclimatic inferences from lakes in northern Sweden. Verh. Internat. Verein. Limnol., 27, 1–9.

Bigler, C., Larocque, I., Peglar, S. M., Birks, H. J. B. & Hall, R. I. 2002. Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene, 12(4), 481–496.
doi:10.1191/0959683602hl559rp

Birks, H. J. B. 1995. Quantitative palaeoenvironmental reconstructions. In Statistical Modelling
 of Quaternary Science Data. Technical Guide, vol. 5
(Maddy, D. & Brew, J. S., eds),
pp. 161–254. Quaternary Research Association, Cambridge.

Bradbury, P., Cumming, B. & Laird, K. 2002. A 1500-year record of climatic and environmental change in Elk Lake, Minnesota – III: measures of past primary productivity. J. Paleolimnol., 27(3), 321–340.
doi:10.1023/A:1016035313101

Bradshaw, E. G., Jones, V. J., Birks, H. J. B. & Birks, H. H. 2000. Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. J. Paleolimnol., 23, 21–34.
doi:10.1023/A:1008021016027

Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.

Brugam, R. B. 1983. The relationship between fossil diatom assemblages and limnological conditions. Hydrobiologia, 98(3), 223–235.

Dalton, C., Birks, H. J. B., Brooks, S. J., Cameron, N. G., Evershede, R. P., Peglar, S. M., Scott, J. A. & Thompson, R. 2005. A multi-proxy study of lake-development in response to catchment changes during the Holocene at Lochnagar, north-east Scotland. Palaeogeogr. Palaeo­climatol. Palaeoecol., 221, 175–201.
doi:10.1016/j.palaeo.2005.02.007

Denys, L. 1990. Fragilaria blooms in the Holocene of the western coastal plain of Belgium. In Proceedings of the 10th Diatom-Symposium 1988 (Simola, H., ed.), pp. 397–406. Koeltz Scientific Books, Koenigstein.

Flower, R. J. 1993. Diatom preservation – experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia, 269/270, 473–484.
doi:10.1007/BF00028045

Flower, R. J. & Nicholson, A. J. 1987. Relationships between bathymetry, water quality and diatoms in some Hebridean lochs. Freshwater Biol., 18(1), 71–85.
doi:10.1111/j.1365-2427.1987.tb01296.x

Galloway, J. M., Patterson, R. T., Doherty, C. T. & Roe, H. M. 2007. Multi-proxy evidence of postglacial climate and environmental change at Two Frog Lake, central mainland coast of British Columbia, Canada. J. Paleolimnol., 38(4), 569–588.
doi:10.1007/s10933-007-9091-4

Grimm, E. C. 1990. TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods. Newsletter, 4, 5–7.

Heiri, O., Lotter, A. F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol., 25, 101–110.
doi:10.1023/A:1008119611481

Hickman, M. & Schweger, C. E. 1991. A palaeoenvironmental study of Fairfax Lake, a small lake situated in the Rocky Mountain Foothills of west-central Alberta. J. Paleolimnol., 6, 1–15.
doi:10.1007/BF00201296

Hickman, M. & White, J. M. 1989. Late Quaternary paleoenvironments of Spring Lake, Alberta. Can. J. Paleolimnol., 2, 305–317.

Hickman, M., Schweger, C. E. & Habgood, T. 1984. Lake Wabamun, Alta: a paleoenvironmental study. Can. J. Bot., 62, 1438–1465.
doi:10.1139/b84-194

Kabucis, I. 1994. Centrālvidzemes ģeobotāniskais rajons [Geobotanical regions in the Central Vidzeme]. In Latvijas daba. Enciklopedija (Kavacis, G., ed.), p. 184. Riga (in Latvian).

Kangur, M. 2009. Spatio-temporal distribution of pollen in Lake Vaike-Juusa (South Estonia) sediments. Rev. Palaeobot. Palynol., 153(3–4),354–359.
doi:10.1016/j.revpalbo.2008.10.003

KangurM., Koff, T., Punning, J.-M., Vainu, M. & Vandel, E. 2009. Lithology and biostratigraphy of the Holocene succession of Lake Ķūži, Vidzeme Heights (Central Latvia). Geol. Quart., 53(2), 199–208.

Korsman, T., Renberg, I. & Anderson, N. J. 1994. A palaeolimnological test of the influence
of Norway spruce (Picea abies) immigration on lake-water acidity
. Holocene, 4(2),
132–140.
doi:10.1177/095968369400400203

Köster, D., Pienitz, R., Wolfe, B. B., Barry, S., Foster, D. R. & Dixit, S. S. 2005. Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat. Ecosyst. Health., 8(2), 117131.
doi:10.1080/14634980590953743

Krammer, K. & Lange-Bertalot, H. 1988–1991. Bacillariophyceae. In Süsswasserflora von Mittel­europa 2/2–4 (Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D., eds). Gustav Fischer Verlag, Stuttgart/Jena.

Krammer, K. & Lange-Bertalot, H. 1999–2004. Bacillariophyceae. In Süsswasserflora von Mitteleuropa, Vol. 2(1–4) (Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D., eds). Spektrum Akademischer Verlag, Heidelberg/Berlin.

Leira, M. 2005. Diatom responses to Holocene environmental changes in a small lake in northwest Spain. Quatern. Int., 140–141, 90–102.
doi:10.1016/j.quaint.2005.05.005

Lotter, A. F. & Bigler, C. 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat. Sci., 62, 125–141.
doi:10.1007/s000270050002

Marciniak, B. 1979. Dominant diatoms from Late Glacial and Holocene lacustrine sediments in northern Poland. Nova Hedwigia, Beih., 64, 411–426.

Moore, P. D., Webb, J. A. & Collinson, M. E. 1991. Pollen Analysis. 2nd edn. Blackwell. London.

Punning, J.-M. & Puusepp, L. 2007. Diatom assemblages in sediments of Lake Juusa, Southern Estonia with an assessment of their habitat.

 Hydrobiologia, 586, 27–41.
doi:10.1007/s10750-006-0474-8

Punning, J.-M., Kangur, M., Koff, T. & Possnert, G. 2003. Holocene lake-level changes and their reflection in the paleolimnological records of two lakes in northern Estonia. J. Paleo­limnol., 29, 167–178.
doi:10.1023/A:1023291217456

Raukas, A., Aboltins, O. & Gaigalas, A. K. 1995. The Baltic States. Overview. In Quaternary Field Trips in Central Europe (Shirmer, W., ed.), pp. 146–151. Verlag Dr. Friedrich Pfeil, München.

Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J. & Weyhenmeyer, C. E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51(4), 1111–1150.

Salomaa, R. & Alhonen, P. 1983. Biostratigraphy of Lake Spitaalijarvi – an ultraoligotrophic small lake in Lauhanvuori, Western Finland. Hydrobiologia, 103, 295–301.
doi:10.1007/BF00028469

Smol, J. P. 1988. Paleoclimate proxy data from freshwater arctic diatoms. Proc. Int. Assoc. Theor. Appl. Limnol.,23, 837–844.

Sorvari, S., Korhola, A. & Thompson, R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Glob. Change. Biol., 8(2), 171–181.
doi:10.1046/j.1365-2486.2002.00463.x

Stabell, B. 1985. The development and succession of taxa within the diatom genus Fragilaria Lyngbye as a response to basin isolation from the sea. Boreas, 14, 273–286.
doi:10.1111/j.1502-3885.1985.tb00916.x

Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13, 615–621.

Stoermer, E. F. & Smol, J. P. 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge.
doi:10.1017/CBO9780511613005

ter Braak, C. J. F. & Šmilauer, P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Ordination, Version 4.5. Microcomputer Power, Ithaca, New York.

van Dam, H., Mertens, A. & Sinkeldam, J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol., 28, 117–133.
doi:10.1007/BF02334251

Vasks, A., Kalnina, L. & Ritums, R. 1999. The introduction and pre-Christian history of farming in Latvia. PACT, 57, 291–304.

Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O. & Lotter, A. F. 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolimnol., 30, 261–272.
doi:10.1023/A:1026088914129
Back to Issue

Back issues