ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Release of available nitrogen from river-discharged dissolved organic matter by heterotrophic bacteria associated with the cyanobacterium Microcystis aeruginosa; pp. 184–196
PDF | doi: 10.3176/eco.2010.3.02

Authors
Santa Purvina, Christian Béchemin, Maija Balode, Celine Verite, Christophe Arnaud, Serge Y. Maestrini
Abstract
The use of riverine dissolved organic matter by the heterotrophic bacteria associated with a culture of the cyanobacterium Microcystis aeruginosa and release of simple nitrogen compounds were studied in an experimental series. Bacteria reduced the bulk of dissolved organic nitrogen (DON) by half, but when associated with M. aeruginosa, DON was excreted and its concentration rose by 13%. During the stationary growth phase bacteria released ammonium, doubling the concentration of ammonia as well as of nitrates. Bacteria associated with M. aeruginosa consumed riverine DON and joined the ammonification and nitrification process, supplying cyanobacteria with simple nitrogen compounds.
References

Baines, S. P. & Pace, M. L. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr., 36, 1078–1090.
doi:10.4319/lo.1991.36.6.1078

Balode, M. & Purina, I. 1996. Harmful phytoplankton in the Gulf of Riga (the Baltic Sea). In Harmful and Toxic Algal Blooms (Yasumoto, T., Oshima, Y. & Fukuyo, Y., eds), pp. 69–72. Intergovernmental Oceanographic Commission of UNESCO.

Benner, R., Biddanda, B., Black, B. & McCarthy, M. 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Mar. Chem., 57, 243–263.
doi:10.1016/S0304-4203(97)00013-3

Berman, T. & Chava, S. 1999. Algal growth on organic compounds as nitrogen sources. J. Plankton Res., 21, 1423–1437.
doi:10.1093/plankt/21.8.1423

Berman, T., Béchemin, C. & Maestrini, S. Y. 1999. Release of ammonium and urea from dissolved organic nitrogen in aquatic ecosystems. Aquat. Microb. Ecol., 16, 295–302.
doi:10.3354/ame016295

Bourne, D. G., Blakeley, R. L, Riddles, P. & Jones, G. J. 2006. Biodegradation of the cyano­bacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res., 40, 1294–1302.
doi:10.1016/j.watres.2006.01.022

Christoffersen, K., Lyck, S. & Winding, A. 2002. Microbial activity and bacterial community structure during degradation of microcystins. Aquat. Microb. Ecol., 27, 125–136.
doi:10.3354/ame027125

Fuhrman, J. A. & Azam, F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol., 39, 1085–1095.

Goldman, J. C. & Dennett, M. R. 1991. Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar. Biol., 109, 369–378.
doi:10.1007/BF01313502

Grossart, H. P. 1999. Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab. Aquat. Microb. Ecol., 19, 1–11.
doi:10.3354/ame019001

Guillard, R. R. L. & Ryther, J. H. 1962. Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microb., 8, 229–239.
doi:10.1139/m62-029

Guo, L., Santschi, P. H. & Warnken, K. W. 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr., 40, 1392–1403.
doi:10.4319/lo.1995.40.8.1392

Hobbie, J. E., Daley, R. L. & Jasper, S. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 33, 1225–1228.

Jones, G. I., Bourne, D. G., Blakeley, R. L. & Doelle, H. 1994. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat. Toxins, 2, 228–235.
doi:10.1002/nt.2620020412

Kononen, K. & Sellner, K. G. 1995. Toxic cyanobacteria blooms in marine, estuarine and coastal ecosystems. In Harmful Marine Algal Blooms, 6th Internat. Conf. Toxic Mar. Phyto­plankton (Lassus, P., Arzul, G., Erard-Le Denn, E., Gentien, P. & Marcaillou-Le Baut, C., eds), pp. 858–860. Nantes, France.

Lambert, T. W., Holmes, C. F. B. & Hrudey, S. E. 1994. Microcystin class of toxins: health effects and safety of drinking water supplies. Environ. Rev., 2, 167–186.

Lancelot, C. 1983. Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea. Mar. Ecol. Prog. Ser., 12, 115–121.
doi:10.3354/meps012115

Larsson, U. & Hagström, Å. 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol., 2, 199–206.
doi:10.1007/BF00398133

Laznik, M., Stålnacke, P., Grimvall, A. & Wittgren, H. B. 1999. Riverine inputs of nutrients to the Gulf of Riga – temporal and spatial variations. J. Marine Syst., 23, 11–25.
doi:10.1016/S0924-7963(99)00048-2

Lignell, R. 1990. Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Mar. Ecol. Prog. Ser., 68, 85–99.
doi:10.3354/meps068085

Maestrini, S. Y., Balode, M., Béchemin, C. & Purina, I. 1999. Nitrogenous organic substances as potential nitrogen sources, for summer phytoplankton in the Gulf of Riga, eastern Baltic Sea. Plankton Biol. Ecol., 46, 8–17.

Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sc., 282, 401–450.

Myklestad, S. & Haug, A. 1972. Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of concentration of nutrients in the culture medium. J. Exp. Mar. Biol. Ecol., 9, 125–136.
doi:10.1016/0022-0981(72)90041-X

Obernosterer, I. & Herndl, G. J. 1995. Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N : P ratio. Mar. Ecol. Prog. Ser., 116, 247–257.
doi:10.3354/meps116247

Ojaveer, E., Simm, M., Balode, M. & Purina, I. 2003. Effect of Microcystis aeruginosa and Nodularia spumigena on survival of Eurytemora affinis and embryonic and larval development of the Baltic herring Clupea harengus membras. Environ. Toxicol., 19, 236–242.
doi:10.1002/tox.10120

Panosso, R. & Granéli, E. 2000. Effects of dissolved organic matter on the growth of Nodularia spumigena (Cyanophyceae) cultivated under N or P deficiency. Mar. Biol., 136, 331–336.
doi:10.1007/s002270050691

Porter, K. & Freig, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.
doi:10.4319/lo.1980.25.5.0943

Pujo-Pay, M. & Raimbault, P. 1994. Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. Mar. Ecol. Prog. Ser., 105, 203–207.
doi:10.3354/meps105203

Purvina, S., Béchemin, C., Balode, M., Grzebyk, D. & Maestrini, S. 2008. The influence of inorganic nutrients and dissolved organic matter on the growth of cyanobacteria Microcystis aeruginosa isolated from the Gulf of Riga. Acta Univ. Latv. Biol., 745, 61–74.

Seppälä, J. & Balode, M. 1999 Spatial distribution of phytoplankton in the Gulf of Riga during spring and summer stages. J. Marine Syst., 23, 51–67.
doi:10.1016/S0924-7963(99)00050-0

Smith, D. C. & Azam, F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs., 6, 107–114.

Søndergaard, M. & Milddelboe, M. 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser., 118, 283–294.
doi:10.3354/meps118283

Stålnacke, P., Grimvall, A., Sundblad, K. & Tonderski, A. 1999. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ. Monit. Assess., 58, 173–200.
doi:10.1023/A:1006073015871

Stepanauskas, R., Leonardson, L. & Tranvik, L. J. 1999. Bioavailability of wetland-derived DON of freshwater and marine bacterioplankton. Limnol. Oceanogr., 44, 1477–1485.
doi:10.4319/lo.1999.44.6.1477

Stepanauskas, R., Jørgensen, N. O. G., Eigaard, O. R., Zvikas, A., Tranvik, L. J. & Leonardson, L. 2002. Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophi­cation relevance. Ecol. Monogr., 72, 579–597.
doi:10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2

Tupas, L. & Koike, I. 1991. Simultaneous uptake and regeneration of ammonium by mixed assemblages of heterotrophic marine bacteria. Mar. Ecol. Prog. Ser., 70, 273–282.
doi:10.3354/meps070273

Valderrama, J. C. 1995. Methods of nutrient analysis. In Manual on Harmful Marine Microalgae. IOC Manuals and Guides No. 33 (Hallegraeff, M. G., Anderson, D. M. & Cembella, A. D., eds), pp. 251–282. UNESCO, Paris.

Van Dolah, F. M. 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Perspect., 108, 133–141.
doi:10.2307/3454638

Worm, J. & Søndergaard, M. 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat. Microb. Ecol., 14, 19–28.
doi:10.3354/ame014019

Young, K., Docherty, K., Maurice, P. & Bridgham, S. 2005. Degradation of surface-water dissolved organic matter: influences of DOM chemical characteristics and microbial populations. Hydrobiologia, 539, 1–11.
doi:10.1007/s10750-004-3079-0

Zlotnik, I. & Dubinsky, Z. 1989. The effect of light and temperature on DOC excretion and extracellular products of natural phytoplankton. Limnol. Oceanogr., 34, 831–839.
doi:10.4319/lo.1989.34.5.0831
Back to Issue

Back issues