ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Ecology
Comparison of soil microorganism abundance and diversity in stands of European aspen (Populus tremula L.) and hybrid aspen (Populus tremuloides Michx. × P. tremula L.); pp. 265–292
PDF | doi: 10.3176/eco.2012.4.03

Authors
Lelde Grantina-Ievina, Dace Saulite, Martins Zeps, Vizma Nikolajeva, Nils Rostoks
Abstract

The use of short rotation forest tree species is increasing worldwide. The hybrid aspen (Populus tremuloides Michx. × P. tremula L.) is one of the suitable tree species under the climatic conditions of the Baltic region. The cultivation of these trees on former agricultural soils differs from agricultural practices with reduced soil tillage and is characterized by increased demand of nutrients, which in long term can cause changes in the soil microbial populations. The aim of our investigation was to compare soil microbial populations in hybrid aspen and European aspen (P. tremula L.) stands in four sampling plots with aspen age ranging from 10 to 46 years. The abundance and diversity of soil microbial populations were estimated by enumeration of micro­organisms (plate counts on three microbiological media) and by molecular methods (PCR, ARDRA, molecular identification of fungal isolates). Results showed that during long cultivation periods hybrid aspens reduced the number of culturable bacteria. The number of culturable filamentous fungi was statistically significantly increased only in one sampling plot in soil samples from hybrid aspen clones at a depth of 16–30 cm and only on one microbiological cultivation medium. The same was detected also with molecular methods in the case of fungal diversity estimated by Shannon–Weaver diversity indices in this sampling plot. None of the other characteristics of soil microbial populations, such as the number of yeasts and maltose utilizing bacteria on MEA, the number of yeasts and filamentous fungi on RBA, the total amount of soil DNA, fungal and bacterial diversity estimated by molecular biology methods, and species composition of filamentous fungi, was significantly affected by hybrid aspen. The identified filamentous fungi represented the following genera: Acremonium, Exophiala, Geomyces, Gibellulopsis, Gibberella, Hypocrea/Trichoderma, Leptosphaeria, Metarhizium, Mortierella, Nectria, Paecilomyces, Penicillium, Trichosporon, and others. The main conclusion was that cultivation of hybrid aspen as a short rotation forest tree in the Baltic region would not significantly affect the abundance and diversity of saprophytic soil microorganisms.

References

Albrectsen, B. R., Björkén, L., Varad, A., Hagner, Å., Wedin, M., Karlsson, J. & Jansson, S. 2010. Endophytic fungi in European aspen (Populus tremula) leaves – diversity, detection, and a suggested correlation with herbivory resistance. Fungal Diversity, 41, 17–28.
http://dx.doi.org/10.1007/s13225-009-0011-y

Atkins, S. D., Clark, I. M., Sosnowska, D., Hirsch, P. R. & Kerry, B. R. 2003. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting. Appl. Environ. Microb., 69, 4788–4793.
http://dx.doi.org/10.1128/AEM.69.8.4788-4793.2003

Ayala-Zermeño, M. A., Reyes-Montes, M. R., Arroyo-Vázquez, E., Calderón-Ezquerro, M. C., Mier, T., Robledo-Retana, T. & Toriello, C. 2011. An Isaria fumosorosea SCAR marker for evaluation of soil, insect, and airborne samples. Biocontrol. Sci. Techn., 21, 1091–1102.
http://dx.doi.org/10.1080/09583157.2011.603822

Baldrian, P., Voříšková, J., Dobiášová, P., Merhautová, V., Lisá, L. & Valášková, V. 2011. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil, 338, 111–125.
http://dx.doi.org/10.1007/s11104-010-0324-3

Baum, C. & Hrynkiewicz, K. 2006. Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizosphere of Salix spp. J. Plant Nutr. Soil. Sc., 169, 481–487.
http://dx.doi.org/10.1002/jpln.200521922

Baum, C. & Makeschin, F. 2000. Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula × tremuloides). J. Plant Nutr. Soil. Sc., 163, 491–497.
http://dx.doi.org/10.1002/1522-2624(200010)163:5<491::AID-JPLN491>3.3.CO;2-V

Baum, C., Leinweber, P., Weih, M., Lamersdorf, N. & Dimitriou, I. 2009. Effects of short rotation coppice with willows and poplar on soil ecology. Landbauforschung – vTI Agriculture and Forestry Research 3, 59, 183–196.

Bridge, P. & Spooner, B. 2001. Soil fungi: diversity and detection. Plant Soil, 232, 147–154.
http://dx.doi.org/10.1023/A:1010346305799

Cenis, J. L. 1992. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res., 20, 2380.
http://dx.doi.org/10.1093/nar/20.9.2380

Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol., 24, 43–56.
http://dx.doi.org/10.1016/S0929-1393(03)00062-3

Cripps, C. L. & Miller, O. K. 1995. Ectomycorrhizae formed in vitro by quaking aspen: including Inocybe lacera and Amanita pantherina. Mycorrhiza, 5, 357–370.
http://dx.doi.org/10.1007/BF00207408

De Bellis, T., Kernaghan, G. & Widden, P. 2007. Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia, 99, 356–367.
http://dx.doi.org/10.3852/mycologia.99.3.356

Desjardins, A. E. & Gardner, H. W. 1991. Virulence of Gibberella pulicaris on potato tubers and its relationship to a gene for rishitin metabolism. Genetics, 81, 429–435.

Edwards, U., Rogall, T., Blocker, H., Emde, M. & Bottger, E. C. 1989. Isolation and direct complete nucleotide determination of entire genes: characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res., 17, 7843–7853.
http://dx.doi.org/10.1093/nar/17.19.7843

Friedl, M. A. & Druzhinina, I. S. 2012. Taxon-specific metagenomics of Trichoderma reveals
a narrow community of opportunistic species that regulate each other’s development. Microbiology, 158, 69–83.
http://dx.doi.org/10.1099/mic.0.052555-0

Gabor, E. M., de Vries, E. J. & Janssen, D. B. 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol., 44, 153–163.
http://dx.doi.org/10.1016/S0168-6496(02)00462-2

Gardes, M. & Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol., 2, 113–118.
http://dx.doi.org/10.1111/j.1365-294X.1993.tb00005.x

Grantina, L., Kenigsvalde, K., Eze, D., Petrina, Z., Skrabule, I., Rostoks, N. & Nikolajeva, V. 2011a. Impact of six-year-long organic cropping on soil microorganisms and crop disease suppressiveness. Žemdirbystė = Agriculture, 98, 399–408.

Grantina, L., Seile, E., Kenigsvalde, K., Kasparinskis, R., Tabors, G., Nikolajeva, V., Jungerius, P. & Muiznieks, I. 2011b. The influence of the land use on abundance and diversity of soil fungi: comparison of conventional and molecular methods of analysis. Env. Exp. Biol., 9, 9–21.

Grantina, L., Bondare, G., Janberga, A., Tabors, G., Kasparinskis, R., Nikolajeva, V. & Muiznieks, I. 2012. Monitoring seasonal changes in microbial populations of spruce forest soil of the Northern Temperate zone. Estonian J. Ecol., 61, 190–214.
http://dx.doi.org/10.3176/eco.2012.3.03

Halleen, F., Schroers, H.-J., Groenewald, J. Z. & Crous, P. W. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Stud. Mycol., 50, 431–455.

Izzo, A., Nguyen, D. T. & Bruns, T. D. 2006. Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia, 98, 374–383.
http://dx.doi.org/10.3852/mycologia.98.3.374

Jayasinghe, B. A. T. D. & Parkinson, D. 2008. Actinomycetes as antagonists of litter decomposer fungi. Appl. Soil Ecol., 38, 109–118.
http://dx.doi.org/10.1016/j.apsoil.2007.09.005

Kaldorf, M., Renker, C., Fladung, M. & Buscot, F. 2004. Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza, 14, 295–306.
http://dx.doi.org/10.1007/s00572-003-0266-1

Leger, R. J. St., May, B., Allee, L. L., Frank, D. C., Staples, R. C. & Roberts, D. W. 1992. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol., 60, 89–101.
http://dx.doi.org/10.1016/0022-2011(92)90159-2

Lumley, T. C., Gignac, L. D. & Currah, R. S. 2001. Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can. J. Bot., 79, 76–92.
http://dx.doi.org/10.1139/b00-135

Lynch, M. D. J. & Thorn, R. G. 2006. Diversity of basidiomycetes in Michigan agricultural soils. Appl. Environ. Microbiol., 72, 7050–7056.
http://dx.doi.org/10.1128/AEM.00826-06

Makeschin, F. 1991. Influence of fast growing poplars and willows on the soil macrofauna on formerly arable land. In Biomass for Energy, Industry and Environment: 6th E.C. Conference (Grassi, G., Collina, A. & Zibetta, H., eds), pp. 97–103. Elsevier Applied Science, London.

Mann, L. & Tolbert, V. 2000. Soil sustainability in renewable biomass plantings. Ambio, 29, 492–498.
http://dx.doi.org/10.1639/0044-7447(2000)029[0492:SSIRBP]2.0.CO;2

Matthies, C., Erhard, H.-P. & Drake, H. L. 1997. Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J. Basic Microbiol., 37, 335–343.
http://dx.doi.org/10.1002/jobm.3620370506

McLean, M. A. & Huhta, V. 2002. Microfungal community structure in anthropogenic birch stands in central Finland. Biol. Fertil. Soils, 35, 1–12.
http://dx.doi.org/10.1007/s00374-001-0431-7

Menkis, A. & Burokiene, D. 2012. Distribution and genetic diversity of the root-rot pathogen Neonectria macrodidyma in a forest nursery. For. Path., 42, 79–83.
http://dx.doi.org/10.1111/j.1439-0329.2011.00712.x

Nelson, L. E., Switzer, G. L. & Lockaby, B. G. 1987. Nutrition of Populus deltoides plantations during maximum production. Forest Ecol. Manag., 20, 25–41.
http://dx.doi.org/10.1016/0378-1127(87)90148-4

Nikula, S., Percy, K., Oksanen, E., Holopainen, T. & Manninen, S. 2009. Effects of elevated ozone on growth and foliar traits of European and hybrid aspen. BER, 14 (Suppl. A), 29–47.

Pečiulytė, D. & Dirginčiutė-Volodkienė, V. 2010. Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory. 3. Species diversity and community structure of soil fungi. Ekologija, 56, 132–143.
http://dx.doi.org/10.2478/v10055-010-0019-3

Pedras, M. S. C. 2011. Fungal attack and cruciferous defenses: tricking plant pathogens. The biological activity of phytochemicals. Recent Adv. Phytochem., 41, 127–139.

Priha, O., Grayston, S. J., Hiukka, R., Pennanen, T. & Smolander, A. 2001. Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol. Fertil. Soils, 33, 17–24.
http://dx.doi.org/10.1007/s003740000281

R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (visited 20.06.2012).

Renker, C., Otto, P., Schneider, K., Zimdars, B., Maraun, M. & Buscot, F. 2005. Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microbial Ecol., 50, 518–528.
http://dx.doi.org/10.1007/s00248-005-5017-8

Samson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A., Peterson, S. W., Varga, J. & Frisvad, J. C. 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol., 70, 159–183.
http://dx.doi.org/10.3114/sim.2011.70.04

Santos, M. P., Dias, L. P., Ferreira, P. C., Pasin, L. A. A. P. & Rangel, D. E. N. 2011. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J. Invertebr. Pathol., 108, 209–213.
http://dx.doi.org/10.1016/j.jip.2011.09.001

Sevim, A., Demir, I., Höfte, M., Humber, R. A. & Demirbag, Z. 2010. Isolation and characteri­zation of entomopathogenic fungi from hazelnut-growing region of Turkey. Biocontrol, 55, 279–297.
http://dx.doi.org/10.1007/s10526-009-9235-8

Stanton, B., Eaton, J., Johnson, J., Rice, D., Schuette, B. & Moser, B. 2002. Hybrid poplar in the Pacific Northwest: the effects of market-driven management. J. Forest., 100, 28–33.

Sukarno, N., Kurihara, Y., Ilyas, M., Mangunwardoyo, W., Yuniarti, E., Sjamsuridzal, W., Park, J.-Y., Saraswati, R., Inaba, S., Widyastuti, Y., Ando, K. & Harayama, S. 2009. Lecanicillium and Verticillium species from Indonesia and Japan including three new species. Mycoscience, 50, 369–379.
http://dx.doi.org/10.1007/s10267-009-0493-1

Torsvik, V., Sorheim, R. & Goksoyr, J. 1996. Total bacterial diversity in soil and sediment communities – a review. J. Ind. Microbiol. Biot., 17, 170–178.
http://dx.doi.org/10.1007/BF01574690

Tullus, A. 2010. Tree growth and the factors affecting it in young hybrid aspen plantations. A Thesis. Estonian University of Life Sciences, Tartu.

Tullus, H., Tullus, A., Vares, A. & Kanal, A. 2007. Early growth of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on former agricultural lands in Estonia. Forest Ecol. Manag., 245, 118–129.
http://dx.doi.org/10.1016/j.foreco.2007.04.006

Tullus, A., Soo, T., Tullus, H., Vares, A., Kanal, A. & Roosaluste, E. 2008. Early growth and floristic diversity of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on a reclaimed opencast oil shale quarry in North-East Estonia. Oil Shale, 25, 57–74.
http://dx.doi.org/10.3176/oil.2008.1.07

Tullus, A., Tullus, H., Soo, T. & Pärn, L. 2009. Above-ground biomass characteristics of young hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on former agri­cultural land in Estonia. Biomass Bioenerg., 33, 1617–1625.
http://dx.doi.org/10.1016/j.biombioe.2009.08.001

Tullus, A., Rytter, L., Tullus, T., Weih, M. & Tullus, H. 2012. Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand. J. Forest Res., 27, 10–29.
http://dx.doi.org/10.1080/02827581.2011.628949

Watanabe, T. 2002. Soil and Seed Fungi. 2nd edn. CRC Press, Boca Raton.
http://dx.doi.org/10.1201/9781420040821

White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds), pp. 315–322. Academic Press, San Diego.

Yeates, C., Gillings, M. R., Davison, A. D., Altavilla, N. & Veal, D. A. 1998. Methods for micro­bial DNA extraction from soil for PCR amplification. Biol. Proceed. Online, 1, 40–47.
http://dx.doi.org/10.1251/bpo6

Zaccone, C., Soler-Rovira, P., Plaza, C., Cocozza, C. & Miano, T. M. 2009. Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH + Na4P2O7 solutions. J. Hazard. Mater., 167, 987–994.
http://dx.doi.org/10.1016/j.jhazmat.2009.01.078

Zeps, M., Auzenbaha, D., Gailis, A., Treimanis, A. & Grīnfelds, U. 2008. Evaluation and selection of hybrid aspen (Populus tremuloides × Populus tremula) clones. Mežzinātne, 18, 19–34 (in Latvian).

Back to Issue

Back issues