SUPPLEMENTARY MATERIAL
Strontium isotope analysis has been used in archeology for about 40 years to study the provenance and mobility of ancient humans and animals. The interpretation of strontium isotope compositions in archeological materials requires a reference isotopic baseline map that delineates the geographical variation of bioavailable strontium. This paper introduces the first full map of bioavailable strontium in Estonia, based on the 87Sr/86Sr ratio of bioavailable strontium collected from 84 rodents and snails across 38 locations. The results were compared with data that also include larger wild and domestic mammals, to see if their data can be used as a reference in future studies.
The analysis identified two clearly distinct isotopic areas in relation to Estonia’s bedrock composition: (1) coastal and central Estonia, including the West Estonian archipelago, where bedrock is composed of Ordovician and Silurian carbonate rocks and characterized by bioavailable 87Sr/86Sr ratios between 0.7094 and 0.7147; and (2) southern Estonia, located predominantly on Devonian sandstone bedrock, with 87Sr/86Sr ratios of 0.7147–0.7185. The analysis also showed that when stricter statistical methods were applied, the dataset that included larger wild and domestic mammals gave similar results. Hence, in Estonia, our expanded dataset can be cautiously used to provide context in areas where rodent data are missing. The baseline map refines and expands our current knowledge about the distribution of bioavailable strontium in the Baltic Sea region.
Adams, S., Grün, R., McGahan, D., Zhao, J.-X., Feng, Y., Nguyen, A. et al. 2019. A strontium isoscape of north-east Australia for human provenance and repatriation. – Geoarchaeology, 34: 3, 231–251.
https://doi.org/10.1002/gea.21728
Aguzzoni, A., Bassi, M., Robatscher, P., Tagliavini, M., Tirler, W. & Scandellari, F. 2018. Plant Sr isotope ratios as affected by the Sr isotope ratio of the soil and of the external Sr inputs. – Journal of Agricultural and Food Chemistry, 66: 40, 10513–10521.
https://doi.org/10.1021/acs.jafc.8b02604
Ahlström, T. & Price, T. D. 2021. Mobile or stationary? An analysis of strontium and carbon isotopes from Västerbjers, Gotland, Sweden. – Journal of Archaeological Science: Reports, 36, 102902.
https://doi.org/10.1016/j.jasrep.2021.102902
Alonzi, E., Pacheco-Forés, S. I., Gordon, G. W., Kuijt, I. & Knudson, K. J. 2020. New understandings of the sea spray effect and its impact on bioavailable radiogenic strontium isotope ratios in coastal environments. – Journal of Archaeological Science: Reports, 33, 102462.
https://doi.org/10.1016/j.jasrep.2020.102462
Azmy, K., Veizer, J., Wenzel, B., Bassett, M. G. & Copper, P. 1999. Silurian strontium isotope stratigraphy. – GSA Bulletin, 111: 4, 475–483.
https://doi.org/10.1130/0016-7606(1999)111<0475:SSIS>2.3.CO;2
Bäckström, Y. & Price, T. D. 2016. Social identity and mobility at a pre-industrial mining complex, Sweden. – Journal of Archaeological Science, 66, 154–168.
https://doi.org/10.1016/j.jas.2016.01.004
Barnard, H. & Wendrich, W. (eds) 2008. The Archaeology of Mobility: Old World and New World Nomadism. Cotsen Institute of Archaeology Press at UCLA, Los Angeles.
https://doi.org/10.2307/j.ctvdjrq8t
Bentley, A. R. 2006. Strontium isotopes from the Earth to the archaeological skeleton: a review. – Journal of Archaeological Method and Theory, 13, 135–187.
https://doi.org/10.1007/s10816-006-9009-x
Bentley, R. A. & Knipper, C. 2005. Geographical patterns in biologically available strontium, carbon and oxygen isotope signatures in prehistoric SW Germany*. – Archaeometry, 47: 3, 629–644.
https://doi.org/10.1111/j.1475-4754.2005.00223.x
Blank, M., Sjögren, K.-G., Knipper, C., Frei, K. M. & Storå, J. 2018. Isotope values of the bioavailable strontium in inland southwestern Sweden – a baseline for mobility studies.
– PLOS ONE, 13: 10, e0204649.
https://doi.org/10.1371/journal.pone.0204649
Blum, J. D., Taliaferro, E. H., Weisse, M. T. & Holmes, R. T. 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A. – Biogeochemistry, 49, 87–101.
https://doi.org/10.1023/A:1006390707989
Boethius, A., Storå, J., Gustavsson, R. & Kielman-Schmitt, M. 2024. Mobility among the Stone Age island foragers of Jettböle, Åland, investigated through high-resolution strontium isotope ratio analysis. – Quaternary Science Reviews, 328, 108548.
https://doi.org/10.1016/j.quascirev.2024.108548
Bowen, G. J. & West, J. B. 2008. Isotope landscapes for terrestrial migration research. – Tracking Animal Migration with Stable Isotopes. Eds K. A. Hobson & L. I. Wassenaar. (Terrestrial Ecology, 2.) Elsevier, 79–105.
https://doi.org/10.1016/S1936-7961(07)00004-8
Budd, P., Montgomery, J., Barreiro, B. & Thomas, R. G. 2000. Differential diagenesis of strontium in archeological human tissues. – Applied Geochemistry, 15: 5, 687–694.
https://doi.org/10.1016/S0883-2927(99)00069-4
Capo, R. C., Stewart, B. W. & Chadwick, O. A. 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. – Geoderma, 82: 1–3, 197–225.
https://doi.org/10.1016/S0016-7061(97)00102-X
Carling, G. T., Fernandez, D. P., Rey, K. A., Hale, C. A., Goodman, M. M. & Nelson, S. T. 2020. Using strontium isotopes to trace dust from a drying Great Salt Lake to adjacent urban areas and mountain snowpack. – Environmental Research Letters, 15: 11, 114035.
https://doi.org/10.1088/1748-9326/abbfc4
CIAAW (Commission on Isotopic Abundances and Weights).
https://www.ciaaw.org (last accessed 15.08.2025).
Cramer, B. D., Munnecke, A., Schofield, D. I., Haase, K. M. & Haase-Schramm, A. 2011. A revised 87Sr/86Sr curve for the Silurian: implications for global ocean chemistry and the Silurian timescale. – The Journal of Geology, 119: 4, 335–349.
https://doi.org/10.1086/660117
Danielisová, A., Nordfors, U., Kertes, S., Wessman, A., Ackerman, L., Oinonen, M. et al. 2025. Multi-isotopic evidence reveals the emergence of a cosmopolitan community at the Luistari cemetery in Eura, Finland, during the early Medieval period (600–1130 CE). – Archaeological and Anthropological Sciences, 17, 58.
https://doi.org/10.1007/s12520-024-02147-6
Eckelmann, R., Arppe, L., Tarasov, A., Pospieszny, Ł., Ackerman, L., Heyd, V. et al. 2024. Mobility and community at Mesolithic Lake Onega, Karelia, north-west Russia: insights from strontium isotope analysis. – Archaeological and Anthropological Sciences, 17, 17.
https://doi.org/10.1007/s12520-024-02129-8
Ericson, J. E. 1985. Strontium isotope characterization in the study of prehistoric human ecology. – Journal of Human Evolution, 14: 5, 503–514.
https://doi.org/10.1016/S0047-2484(85)80029-4
Estonian Land Board. Spatial Data Repository.
https://xgis.maaamet.ee/xgis2/page/app/geoloogia400k (last accessed 15.08.2025).
Faure, G. & Mensing, T. M. 2005. Isotopes: Principles and Applications. 3rd ed. John Wiley & Sons, Hoboken.
Frei, K. M. & Price, T. D. 2012. Strontium isotopes and human mobility in prehistoric Denmark. – Archaeological and Anthropological Sciences, 4, 103–114.
https://doi.org/10.1007/s12520-011-0087-7
Frei, R. & Frei, K. M. 2013. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark) – a base for provenance studies in archaeology and agriculture. – Applied Geochemistry, 38, 147–160.
https://doi.org/10.1016/j.apgeochem.2013.09.007
Göhring, A., Hölzl, S., Mayr, C. & Strauss, H. 2023. Multi-isotope fingerprints of recent environmental samples from the Baltic coast and their implications for bioarchaeological studies. – Science of the Total Environment, 874, 162513.
https://doi.org/10.1016/j.scitotenv.2023.162513
Gori, M., Revello Lami, M. & Pintucci, A. 2018. Editorial: Practices, representations and meanings of human mobility in archaeology. – Ex Novo Journal of Archaeology, 3, 1–6.
https://doi.org/10.32028/exnovo.v3i0.377
Gouldey, J. C., Saltzman, M. R., Young, S. A. & Kaljo, D. 2010. Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): implications for tectonics and weathering. – Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 3–4, 264–275.
https://doi.org/10.1016/j.palaeo.2010.05.035
Gribov, A. & Krivoruchko, K. 2020. Empirical Bayesian kriging implementation and usage. – Science of the Total Environment, 722, 137290.
https://doi.org/10.1016/j.scitotenv.2020.137290
Grimstead, D. N., Nugent, S. & Whipple, J. 2017. Why a standardization of strontium isotope baseline environmental data is needed and recommendations for methodology. – Advances in Archaeological Practice, 5: 2, 184–195.
https://doi.org/10.1017/aap.2017.6
Gutsmiedl-Schümann, D., Gerling, C., Lapshin, V. A., Moiseyev, V. G., Shirobokov, I. G., Solov’ev, S. L. et al. 2020. Some insights into the lives of builders of early Saint Petersburg. – Praehistorische Zeitschrift, 95: 2, 575–605.
https://doi.org/10.1515/pz-2020-0020
Holt, E., Evans, J. A. & Madgwick, R. 2021. Strontium (87Sr/86Sr) mapping: a critical review of methods and approaches. – Earth-Science Reviews, 216, 103593.
https://doi.org/10.1016/j.earscirev.2021.103593
Hoogewerff, J. A., Reimann, C., Ueckermann, H., Frei, R., Frei, K. M., van Aswegen, T. et al. 2019. Bioavailable 87Sr/86Sr in European soils: a baseline for provenancing studies. – Science of the Total Environment, 672, 1033–1044.
https://doi.org/10.1016/j.scitotenv.2019.03.387
Iital, A., Pachel, K. & Deelstra, J. 2008. Monitoring of diffuse pollution from agriculture to support implementation of the WFD and the Nitrate Directive in Estonia. – Environmental Science & Policy, 11: 2, 185–193.
https://doi.org/10.1016/j.envsci.2007.10.008
van der Jagt, I. 2012. An insight into animal exchange in Early Medieval Oegstgeest: a combined archaeozoological and isotopic approach. – A Bouquet of Archaeozoological Studies. Essays in honour of Wietske Prummel. Eds D. C. M. Raemaekers, E. Esser, R. C. G. M. Lauwerier & J. T. Zeiler. Barkhuis, Eelde, 141–151.
James, H. F., Adams, S., Willmes, M., Mathison, K., Ulrichsen, A., Wood, R. et al. 2022. A large-scale environmental strontium isotope baseline map of Portugal for archaeological and paleoecological provenance studies. – Journal of Archaeological Science, 142, 105595.
https://doi.org/10.1016/j.jas.2022.105595
Kalm, V. 2012. Last Scandinavian Glaciation southeast of the Baltic Sea: ice-flow pattern, ice marginal positions and thickness of the Quaternary deposits in the background of bedrock topography. – Quaternary International, 279–280, 231.
https://doi.org/10.1016/j.quaint.2012.08.504
Karise, V., Metsur, M., Perens, R., Savitskaja, L. & Tamm, I. 2004. Eesti põhjavee kasutamine ja kaitse. Maves AS, Tallinn.
Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H. et al. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. – Estonian Journal of Earth Sciences, 58: 4, 219–228.
https://doi.org/10.3176/earth.2009.4.01
Kirsimäe, K., Somelar, P. & Jõeleht, A. 2020. Illitization of the lower Cambrian (Terreneuvian) Blue Clay in the northern Baltic Palaeobasin. – Estonian Journal of Earth Sciences, 69: 4, 200–213.
http://dx.doi.org/10.3176/earth.2020.14
Koistinen, T., Stephens, M. B., Bogatchev, V., Nordgulen, Ø., Wennerström, M. & Korhonen, J. 2001. Geological map of the Fennoscandian Shield, scale 1:2 000 000. Geological Survey of Finland Special Maps, 48.
Kootker, L. M., van Lanen, R. J., Kars, H. & Davies, G. R. 2016. Strontium isoscapes in The Netherlands. Spatial variations in 87Sr/86Sr as a proxy for palaeomobility. – Journal of Archaeological Science: Reports, 6, 1–13.
https://doi.org/10.1016/j.jasrep.2016.01.015
Kriiska, A., Lang, V., Mäesalu, A., Tvauri, A. & Valk, H. 2020. Eesti esiaeg. (Eesti ajalugu, I.) Tartu Ülikooli Ajaloo ja Arheoloogia Instituut, Tartu.
Ladegaard-Pedersen, P., Sabatini, S., Frei, R., Kristiansen, K. & Frei, K. M. 2021. Testing Late Bronze Age mobility in southern Sweden in the light of a new multi-proxy strontium isotope baseline of Scania. – PLOS ONE, 16: 4, e0250279.
https://doi.org/10.1371/journal. pone.0250279
Lahtinen, M., Arppe, L. & Nowell, G. 2021. Source of strontium in archaeological mobility studies – marine diet contribution to the isotopic composition. – Archaeological and Anthropological Sciences, 13: 1.
https://doi.org/10.1007/s12520-020-01240-w
Lahtinen, R., Köykkä, J., Salminen, J., Sayab, M. & Johnston, S. T. 2023. Paleoproterozoic tectonics of Fennoscandia and the birth of Baltica. – Earth-Science Reviews, 246, 104586.
https://doi.org/10.1016/j.earscirev.2023.104586
Lang, V. 2012. Building remains at the hill fort of Keava. – Estonian Journal of Archaeology, 16: 1S, 7–35.
http://dx.doi.org/10.3176/arch.2012.supv1.02
Lengfelder, F., Grupe, G., Stallauer, A., Huth, R. & Söllner, F. 2019. Modelling strontium isotopes in past biospheres – assessment of bioavailable 87Sr/86Sr ratios in local archaeological vertebrates based on environmental signatures. – Science of the Total Environment, 648, 236–252.
https://doi.org/10.1016/j.scitotenv.2018.08.014
Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. 2013. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. – Journal of Experimental Social Psychology, 49: 4, 764–766.
https://doi.org/10.1016/j.jesp.2013.03.013
Madgwick, R., Lamb, A. L., Sloane, H., Nederbragt, A. J., Albarella, U., Pearson, M. P. et al. 2019. Multi-isotope analysis reveals that feasts in the Stonehenge environs and across Wessex drew people and animals from throughout Britain. – Science Advances, 5: 3, eaau6078.
https://doi.org/10.1126/sciadv.aau6078
Marciniak, A., Evans, J., Henton, E., Pearson, J., Lisowski, M., Bartkowiak, M. et al. 2017. Animal husbandry in the Early and Middle Neolithic settlement at Kopydłowo in the Polish lowlands. A multi-isotope perspective. – Archaeological and Anthropological Sciences, 9, 1461–1479.
https://doi.org/10.1007/s12520-017-0485-6
Montgomery, J. 2010. Passports from the past: investigating human dispersals using strontium isotope analysis of tooth enamel. – Annals of Human Biology, 37: 3, 325–346.
https://doi.org/10.3109/03014461003649297
Nebokat, J. 1882. Kunstlik põllurammutamine. – Kündja, 5.
Niinesalu-Moon, M., Randoja, K., Lillak, A., Oras, E., Tõrv, M., Johanson, K. et al. 2023. Pre-Roman Iron Age inhumations: a multi-proxy analysis of a burial complex from Tallinn, Estonia. – Estonian Journal of Archaeology, 27: 2, 129–158.
https://doi.org/10.3176/arch.2023.2.03
Oras, E., Lang, V., Rannamäe, E., Varul, L., Konsa, M., Limbo, J. et al. 2016. Tracing prehistoric migration: isotope analysis of Bronze and Pre-Roman Iron Age coastal burials in Estonia. – Estonian Journal of Archaeology, 20: 1, 3–32.
https://doi.org/10.3176/arch.2016.1.01
Penske, S., Küßner, M., Rohrlach, A. B., Knipper, C., Nováček, J., Childebayeva, A. et al. 2024. Kinship practices at the Early Bronze Age site of Leubingen in central Germany. – Scientific Reports, 14, 3871.
https://doi.org/10.1038/s41598-024-54462-6
Perry, M. A., Coleman, D. & Delhopital, N. 2008. Mobility and exile at 2nd century A.D. Khirbet edh-Dharih: strontium isotope analysis of human migration in western Jordan. – Geoarchaeology, 23: 4, 528–549.
https://doi.org/10.1002/gea.20230
Petersone-Gordina, E., Montgomery, J., Millard, A. R., Nowell, G., Peterkin, J.,
Roberts, C. A. et al. 2022. Strontium isotope identification of possible rural immigrants in 17th century mass graves at St. Gertrude Church cemetery in Riga, Latvia. – Archaeometry, 64: 4, 1028–1043.
https://doi.org/10.1111/arcm.12759
Piličiauskas, G., Simčenka, E., Lidén, K., Kozakaitė, J., Miliauskienė, Ž., Piličiauskienė, G. et al. 2022. Strontium isotope analysis reveals prehistoric mobility patterns in the southeastern Baltic area. – Archaeological and Anthropological Sciences, 14, 74.
https://doi.org/10.1007/s12520-022-01539-w
Pirrus, E. 2001. Eesti geoloogia. Tallinna Tehnikaülikooli kirjastus, Tallinn.
Poprawa, P., Šliaupa, S., Stephenson, R. A. & Lazauskiene, L. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. – Tectonophysics, 314: 1–3, 219–239.
https://doi.org/10.1016/S0040-1951(99)00245-0
Pors Nielsen, S. 2004. The biological role of strontium. – Bone, 35: 3, 583–588.
https://doi.org/10.1016/j.bone.2004.04.026
Price, D. T., Grupe, G. & Schröter, P. 1994. Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. – Applied Geochemistry, 9: 4, 413–417.
https://doi.org/10.1016/0883-2927(94)90063-9
Price, T. D., Burton, J. H. & Bentley, R. A. 2002. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. – Archaeometry, 44: 1, 117–135.
https://doi.org/10.1111/1475-4754.00047
Price, T. & Gestsdóttir, H. 2006. The first settlers of Iceland: an isotopic approach to colonisation. – Antiquity, 80: 307, 130–144.
https://doi.org/10.1017/S0003598X00093315
Price, T. D., Frei, K., Tiesler, V. & Gestsdóttir, H. 2012. Isotopes and mobility: case studies with large samples. – Population Dynamics in Prehistory and Early History. Eds E. Kaiser,
J. Burger & W. Schier. De Gruyter, Berlin, 319–329.
https://doi.org/10.1515/9783110266306.311
Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Oras, E. 2016. Isotopic provenancing of the Salme ship burials in Pre-Viking Age Estonia. – Antiquity, 90: 352, 1022–1037.
https://doi.org/10.15184/aqy.2016.106
Price, T. D., Arcini, C., Gustin, I., Drenzel, L. & Kalmring, S. 2018. Isotopes and human burials at Viking Age Birka and the Mälaren region, east central Sweden. – Journal of Anthropological Archaeology, 49, 19–38.
https://doi.org/10.1016/j.jaa.2017.10.002
Price, T. D., Frei, R., Brinker, U., Lidke, G., Terberger, T., Frei, K. M. et al. 2019. Multi-isotope proveniencing of human remains from a Bronze Age battlefield in the Tollense Valley in northeast Germany. – Archaeological and Anthropological Sciences, 11, 33–49.
https://doi.org/10.1007/s12520-017-0529-y
Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Price, N. 2020. Human remains, context, and place of origin for the Salme, Estonia, boat burials. – Journal of Anthropological Archaeology, 58, 101149.
https://doi.org/10.1016/j.jaa.2020.101149
Price, T. D., Bläuer, A., Oras, E. & Ruohonen, J. 2021. Baseline 87Sr/86Sr values in southern Finland and isotopic proveniencing of the cemetery at Ravattula Ristimäki. – Fennoscandia Archaeologica, 38, 135–152.
Puura, V., Klein, V., Koppelmaa, H. & Niin, M. 1997. Precambrian basement. – Geology and Mineral Resources of Estonia. Eds A. Raukas & A. Teedumäe. Estonian Academy Publishers, Tallinn, 27–34.
QGIS (Quantum GIS).
https://qgis.org (last accessed 15.08.2025).
Qing, H., Barnes, C. R., Buhl, D. & Veizer, J. 1998. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval seawater. – Geochimica et Cosmochimica Acta, 62: 10, 1721–1733.
https://doi.org/10.1016/S0016-7037(98)00104-5
Rasmussen, K. L., Milner, G., Skytte, L., Lynnerup, N., Thomsen, J. L. & Boldsen, J. L. 2019. Mapping diagenesis in archaeological human bones. – Heritage Science, 7, 41.
https://doi.org/10.1186/s40494-019-0285-7
Raukas, A. 1978 = Раукас А. Плейстоценовые отложения Эстонской ССР. Valgus, Tallinn.
Raukas, A. 1988. Eestimaa viimastel aastamiljonitel. Valgus, Tallinn.
Raukas, A. & Kajak, K. 1997. Quaternary cover. – Geology and Mineral Resources of Estonia. Eds A. Raukas & A. Teedumäe. Estonian Academy Publishers, Tallinn, 125–136.
Raukas, A. & Teedumäe, A. (eds) 1997. Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn.
Rossi, M., Iacumin, P. & Venturelli, G. 2024. 87Sr/86Sr isotope ratio as a tool in archaeological investigation: limits and risks. – Quaternary, 7: 1, 6.
https://doi.org/10.3390/quat7010006
Schulting, R., Richards, M., Pouncett, J., Manco, B. N., Freid, E. & Ostapkowicz, J. 2018. Absence of Saharan dust influence on the strontium isotope ratios on modern trees from the Bahamas and Turks and Caicos Islands. – Quaternary Research, 89: 2, 394–412.
https://doi.org/10.1017/qua.2018.8
Sjögren, K.-G., Price, T. D. & Ahlström, T. 2009. Megaliths and mobility in south-western Sweden. Investigating relationships between a local society and its neighbours using strontium isotopes. – Journal of Anthropological Archaeology, 28: 1, 85–101.
https://doi.org/10.1016/j.jaa.2008.10.001
Šliaupa, S. & Hoth, P. 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. – The Baltic Sea Basin. Eds J. Harff, S. Björck & P. Ioth. (Central and Eastern European Development Studies (CEEDES).) Springer-Verlag, Berlin-Heidelberg, 13–51.
https://doi.org/10.1007/978-3-642-17220-5_2
Slovak, N. M. & Paytan, A. 2012. Applications of Sr isotopes in archaeology. – Handbook of Environmental Isotope Geochemistry. Ed. M. Baskaran. (Advances in Isotope Geochemistry (ADISOTOPE).) Springer, Berlin-Heidelberg, 743–768.
https://doi.org/10.1007/978-3-642-10637-8_35
Snoeck, C. 2014. Impact of strontium sea spray effect on the isotopic ratio (87Sr/86Sr) of plants in coastal Ireland. – Quaternary Newsletter, 134, 37–39.
Snoeck, C., Ryan, S., Pouncett, J., Pellegrini, M., Claeys, P., Wainwright, A. N. et al. 2020. Towards a biologically available strontium isotope baseline for Ireland. – Science of the Total Environment, 712, 136248.
https://doi.org/10.1016/j.scitotenv.2019.136248
Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. & All, T. 2004. Outlines of the Precambrian basement of Estonia. – Proceedings of the Estonian Academy of Sciences. Geology, 53: 3, 149–164.
https://doi.org/10.3176/geol.2004.3.02
Suursaar, Ü., Torn, K., Mäemets, H. & Rosentau, A. 2024. Overview and evolutionary path of Estonian coastal lagoons. – Estuarine, Coastal and Shelf Science, 303, 108811.
https://doi.org/10.1016/j.ecss.2024.108811
Tänavsuu-Milkeviciene, K., Plink-Björklund, P., Kirsimäe, K. & Ainsaar, L. 2009. Coeval versus reciprocal mixed carbonate–siliciclastic deposition, Middle Devonian Baltic Basin, eastern Europe: implications from the regional tectonic development. – Sedimentology, 56: 5, 1250–1274.
https://doi.org/10.1111/j.1365-3091.2008.01032.x
Techer, I., Medini, S., Janin, M. & Arregui, M. 2017. Impact of agricultural practice on the Sr isotopic composition of food products: application to discriminate the geographic origin of olives and olive oil. – Applied Geochemistry, 82, 1–14.
https://doi.org/10.1016/j.apgeochem.2017.05.010
Thomsen, E., Andreasen, R. & Rasmussen, T. L. 2021. Homogeneous glacial landscapes can have high local variability of strontium isotope signatures: implications for prehistoric migration studies. – Frontiers in Ecology and Evolution, 8.
https://doi.org/10.3389/fevo.2020.588318
Viiding, H. 1955. Eesti NSV rändkividest. Dissertatsioon geoloogilis-mineraloogiliste teaduste kandidaadi teadusliku kraadi taotlemiseks. Tartu Riikliku Ülikooli mineraloogia kateeder, Tartu.
Whelton, H. L., Lewis, J., Halstead, P., Isaakidou, V., Triantaphyllou, S., Tzevelekidi, V. et al. 2018. Strontium isotope evidence for human mobility in the Neolithic of northern Greece. – Journal of Archaeological Science: Reports, 20, 768–774.
https://doi.org/10.1016/j.jasrep.2018.06.020
Widga, C., Walker, J. D. & Boehm, A. 2017. Variability in bioavailable 87Sr/86Sr in the North American Midcontinent. – Open Quaternary, 3: 1, 4.
https://doi.org/10.5334/oq.32
Wierzbowski, H. 2013. Strontium isotope composition of sedimentary rocks and its application to chemostratigraphy and palaeoenvironmental reconstructions. – Annales Universitatis Mariae Curie-Sklodowska Sectio AAA – Physica, 68: 1.
https://doi.org/10.2478/v10246-012-0017-2
Willmes, M., Bataille, C. P., James, H. F., Moffat, I., McMorrow, L., Kinsley, L. et al. 2018. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. – Applied Geochemistry, 90, 75–86.
https://doi.org/10.1016/j.apgeochem.2017.12.025
Zieliński, M., Dopieralska, J., Królikowska-Ciągło, S., Walczak, A. & Belka, Z. 2021. Mapping of spatial variations in Sr isotope signatures (87Sr/86Sr) in Poland – implications of anthropogenic Sr contamination for archaeological provenance and migration research. – Science of the Total Environment, 775, 145792.
https://doi.org/10.1016/j.scitotenv.2021.145792