ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1997
 
Archaeology cover
Estonian Journal of Archaeology
ISSN 1736-7484 (Electronic)
ISSN 1406-2933 (Print)
Impact Factor (2022): 1.0
Research article
Pre-Roman Iron Age inhumations: a multi-proxy analysis of a burial complex from Tallinn, Estonia; pp. 129–158
PDF | https://doi.org/10.3176/arch.2023.2.03

Authors
Maris Niinesalu-Moon ORCID Icon, Keiti Randoja, Anu Lillak, Ester Oras ORCID Icon, Mari Tõrv ORCID Icon, Kristiina Johanson ORCID Icon, Ragnar Saage ORCID Icon, Alexandre Lucquin ORCID Icon, Sirje Hiie, Aivar Kriiska ORCID Icon, Valter Lang
Abstract

This article presents the results of a multi-proxy study conducted on a triple burial found at a settlement site at Pärnu Road 41, Tallinn, Estonia, dating to 405–360 cal BC (Pre-Roman Iron Age). Through archaeological and chemical analyses, including AMS dating, archaeobotany, osteology, stable isotope analysis, lipid analysis, metallography and XRF analysis, this study proves valuable insights into the provenance, diet, and burial practices of the woman and children buried in the grave at Pärnu Road 41. 

The stable isotope analysis of strontium, carbon and nitrogen suggests that the individuals were of local origin and did not travel long distances during their lifetime. It is likely that the diet of the woman was mainly based on terrestrial protein, which is also supported by lipid analysis performed of pot sherds. These results correspond with the dietary stable isotope values of individuals from Estonia dated to the second half of the Bronze Age and the Pre-Roman Iron Age. Based on the find context of carbonized grains, the partial burning of the female skeleton and the fire pit built contemporaneously above the grave, it is likely that grains and fire could have played an important role in inhumation burials. However, because of the scarcity of inhumation burials in pit graves, it is unclear whether or not the triple burial at Pärnu Road 41 represents a widespread burial practice alongside the stone graves typical of this period. Moreover, it is possible that the observed rituals are linked to foreign customs, as the buried individuals may have had familial ties to immigrants from different regions of eastern Europe, as indicated by a unique bronze bell-pendant found in the grave. 

This study also introduces the discovery of the earliest known iron smithing site in Estonia. Spherical magnetic droplets found within the burial soil were proven to be hammer scales, formed as a by-product of iron working. The appearance of hammer scales in the soil of a burial dated to the 4th century BC challenges the previously established timeline of iron working in the region. 

References

AlQahtani, S. J., Hector, M. P. & Liversidge, H. M. 2010. Brief communication: the London atlas of human tooth development and eruption. – American Journal of Physical Anthropology, 142: 3, 481–490.
https://doi.org/10.1002/ajpa.21258

Ariste, E. 1939. Kaevamisaruanne 24.–26. IX 1938. a. Manuscript at the Institute of History and Archaeology of the University of Tartu.

Bentley, R. A. 2006. Strontium isotopes from the Earth to the archaeological skeleton: a review. – Journal of Archaeological Method and Theory, 13: 3, 135–187.
https://doi.org/10.1007/s10816-006-9009-x

Berezanskaja, S. S. & Kločko, V. I. 1998. Das Gräberfeld von Hordeevka. Mit Beiträgen von T. Goško & L. Litvinova. (Archäologie in Eurasien, 5.) Verlag Marie Leidorf GmbH, Rahden/Westf.

Bondetti, M., Scott, E., Courel, B., Lucquin, A., Shoda, S., Lundy, J., Labra-Odde, C., Drieu, L. & Craig, O. E. 2021. Investigating the formation and diagnostic value of ω-(o-alkylphenyl)alkanoic acids in ancient pottery. – Archaeometry, 63: 3, 594–608.  
https://doi.org/10.1111/arcm.12631

Brock, F., Higham, T., Ditchfield, P. & Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (Orau). – Radiocarbon, 52: 1, 103–112. 
https://doi.org/10.1017/S0033822200045069

Bronk Ramsey, C. 2021. OxCal 4.4 Manual. 
https://c14.arch.ox.ac.uk/oxcal/OxCal.html

Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. – Radiocarbon, 46: 1, 155–163.
https://doi.org/10.1017/S0033822200039473

Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. 1988. Improved collagen extraction by modified Longin method. – Radiocarbon, 30: 2, 171–177.
https://doi.org/10.1017/S0033822200044118

Buckberry, J. L. & Chamberlain, A. T. 2002. Age estimation from the auricular surface of the ilium: a revised method. – American Journal of Physical Anthropology, 119: 3, 231–239.
https://doi.org/10.1002/ajpa.10130

Budd, P. & Taylor, T. 1995. The faerie smith meets the bronze industry: magic versus science in the interpretation of prehistoric metal making. – World Archaeology, 27: 1, 133–143.
https://doi.org/10.1080/00438243.1995.9980297

Buikstra, J. E. & Ubelaker, D. 1994. Standards for data collection from human skeletal remains. (Arkansas Archeological Survey Research Series, 44.) Arkansas Archeological Survey, Fayetteville, AR. 

Cappers, R. T. J. & Neef, R. 2012. Handbook of Plant Palaeoecology. (Groningen Archaeological Studies, 19.) Barkhuis, Groningen.
https://doi.org/10.2307/j.ctt20p56g8

Colombini, M. P., Giachi, G., Modugno, F. & Ribechini, E. 2005. Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae. – Journal of Mass Spectrometry, 40: 5, 675–687.
https://doi.org/10.1002/jms.841

Courel, B., Robson, H. K., Lucquin, A., Dolbunova, E., Oras, E., Adamczak, K., Andersen, S. H., Astrup, P. M., Charniauski, M., Czekaj-Zastawny, A., Ezepenko, I.Hartz, S., Kabaciński, J., Kotula, A., Kukawka, S., Loze, I., Mazurkevich, A., Piezonka, H., Piličiauskas, G., Sørensen, S. A., Talbot, H. M., Tkachou, A., Tkachova, M., Wawrusiewicz, A., Meadows, J., Heron, C. P. & Craig, O. E. 2020. Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter-gatherers. – Royal Society Open Science, 7: 4, 192016.
https://doi.org/10.1098/rsos.192016

Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombé, P., Milner, N. J., Stern, B., Bailey, G. N. & Heron, C. P. 2007. Molecular and isotopic demonstration of the processing of aquatic products in Northern European prehistoric pottery. – Archaeometry, 49: 1, 135–152.
https://doi.org/10.1111/j.1475-4754.2007.00292.x

Craig, O. E., Saul, H., Lucquin, A., Nishida, Y., Taché, K., Clarke, L., Thompson, A., Altoft, D. T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C. P. & Jordan, P. 2013. Earliest evidence for the use of pottery. – Nature, 496: 7445, 351–354.
https://doi.org/10.1038/nature12109

DeNiro, M. J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. – Nature, 317, 806–809.
https://doi.org/10.1038/317806a0

Dungworth, D. & Wilkes, R. 2009. Understanding hammerscale: the use of high-speed film and electron microscopy. – Historical Metallurgy, 43: 1, 33–46.

Eriksson, G. & Lidén, K. 2013. Dietary life histories in Stone Age Northern Europe. – Journal of Anthropological Archaeology, 32: 3, 288–302. 
https://doi.org/10.1016/j.jaa.2012.01.002

Evans, J., Stoodley, N. & Chenery, C. 2006. A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England. – Journal of Archaeological Science, 33: 2, 265–272.
https://doi.org/10.1016/j.jas.2005.07.011

Evershed, R. P. 2008. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. – World Archaeology, 40: 1, 26–47. 
https://doi.org/10.1080/00438240801889373

Fahy, G. E., Deter, C., Pitfield, R., Miszkiewicz, J. J. & Mahoney, P. 2017. Bone deep: variation in stable isotope ratios and histomorphometric measurements of bone remodelling within adult humans. – Journal of Archaeological Science, 87, 10–16. 
https://doi.org/10.1016/j.jas.2017.09.009

Fuller, B. T., Fuller, J. L., Harris, D. A. & Hedges, R. E. M. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios.– American Journal of Physical Anthropology, 129: 2, 279–293. 
https://doi.org/10.1002/ajpa.20249

Gansum, T. 2004. Role the bones – from iron to steel. – Norwegian Archaeological Review, 37: 1, 41–57.
https://doi.org/10.1080/00293650410001199

Grikpėdis, M. & Matuzevičiūtė, G. M. 2020. From barley to buckwheat: plants cultivated in the Eastern Baltic region until the 13th–14th century AD. – Archaeobotanical Studies of Past Plant Cultivation in Northern Europe. Advances in Archaeobotany. Eds S. Vanhanen & P. Lagerås. Barkhuis, Eelde, 155–170.
https://doi.org/10.2307/j.ctv19qmf01.14

Grupe, G., Heinrich, D. & Peters, J. 2009. A brackish water aquatic foodweb: trophic levels and salinity gradients in the Schlei fjord, Northern Germany, in Viking and medieval times. – Journal of Archaeological Science, 36: 10, 2125–2144.
https://doi.org/10.1016/j.jas.2009.05.011

Hansel, F. A., Copley, M. S., Madureira, L. A. & Evershed, R. P. 2004. Thermally produced ω-(o-alkylphenyl)alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. – Tetrahedron Letters, 45: 14, 2999–3002.
https://doi.org/10.1016/j.tetlet.2004.01.111

Hansson, A. M. & Bergström, L. 2002. Archaeobotany in prehistoric graves – concepts and methods. – Journal of Nordic Archaeological Science, 13, 43–58.

Hedges, R. E. M. & Reynard, L. M. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. – Journal of Archaeological Science, 34: 8, 1240–1251. 
https://doi.org/10.1016/j.jas.2006.10.015

Hedges, R. E. M., Clement, J. G., Thomas, C. D. L. & O’Connell, T. C. 2007. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. – American Journal of Physical Anthropology, 133: 2, 808–816. 
https://doi.org/10.1002/ajpa.20598

Heron, C., Craig, O. E., Luquin, A., Steele, V. J., Thompson, A. & Piličiauskas, G. 2015. Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3300–2400 cal BC. – Journal of Archaeological Science, 63, 33–43.
https://doi.org/10.1016/j.jas.2015.08.002

Hinton, D. A. 1998. Anglo-Saxon smiths and myths. – Bulletin of the John Rylands Library, 80: 1, 3–22.
https://doi.org/10.7227/BJRL.80.1.1

Indreko, R. 1939. Asva linnus-asula. – Muistse Eesti linnused. 1936.–1938. a. uurimiste tulemused. Ed. H. Moora. Õpetatud Eesti Selts, Tartu.

Jaanits, L., Laul, S., Lõugas, V. & Tõnisson, E. 1982. Eesti esiajalugu. Eesti Raamat, Tallinn.

Jacomet, S. 2006. Identification of Cereal Remains from Archaeological Sites. Basel University, Basel.

Jussila, T. & Kriiska, A. 2004a. Ranta-ajoitus Eesti 0-7700BP ver. 1.2a (6.4.04). 

Jussila, T. & Kriiska, A. 2004b. Shore displacement chronology of the Estonian Stone Age. – Estonian Journal of Archaeology, 8: 1, 3–32.
https://doi.org/10.3176/arch.2004.1.01

Karczewski, M. 2013. On the road to the Other World. Plants in the burial rites of Bogaczewo culture (Roman Period, northeast Poland). – Archaeologia Baltica, 18, 126–146.
https://doi.org/10.15181/ab.v18i0.69

Khrustaleva, I. & Kriiska, A. 2022. Jägala Jõesuu V Stone Age settlement site in northern Estonia: spatial and contextual analysis of finds. – Estonian Journal of Archaeology, 26: 2, 81–124.
https://doi.org/10.3176/arch.2022.2.01

Kivikoski, E. 1973. Die Eisenzeit Finnlands. Bildwerk und Text. Neuausgabe. Finnische Altertumsgesellschaft, Helsinki.

Klinken, G. J. van. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. – Journal of Archaeological Science, 26: 6, 687–695. 
https://doi.org/10.1006/jasc.1998.0385

Kriiska, A. 2009. The beginning of farming in the eastern Baltic area. – The East European Plain on the Eve of Agriculture. Eds P. M. Dolukhanov, G. R. Sarson & A. M. Shukurov. (British Archaeological Reports. International Series, 1964.) Archaeopress, Oxford, 159–179.

Kriiska, A., Lang, V., Mäesalu, A., Tvauri, A. & Valk, H. 2020a. Eesti esiaeg. (Eesti ajalugu, I.) Tartu Ülikooli Ajaloo- ja Arheoloogia Instituut, Tartu. 

Kriiska, A., Khrustaleva, I. & Nordqvist, K. 2020b. The Iron Age habitation phase of the Vasa settlement site in north-eastern Estonia. – Archaeological Fieldwork in Estonia 2019, 45–50.

Krogman, W. M. & Isçan, M. Y. 1986. The Human Skeleton in Forensic Medicine. 2nd ed. Charles C Thomas Publisher, Springfield. 

Laneman, M. 2012. Stone-cist grave at Kaseküla, western Estonia, in the light of AMS dates of the human bones. – Estonian Journal of Archaeology, 16: 2, 91–117. 
https://doi.org/10.3176/arch.2012.2.01

Laneman, M. 2021. The date of the stone-cist cemetery at Jõelähtme reconsidered. – Estonian Journal of Archaeology, 25: 1, 55–89.
https://doi.org/10.3176/arch.2021.1.03

Laneman, M. 2022. The age of the stone-cist graves at the lower reaches of the Pirita River reconsidered: analysis of the radiocarbon data. – Estonian Journal of Archaeology, 26: 1, 27–55.
https://doi.org/10.3176/arch.2022.1.02

Laneman, M. & Lang, V. 2013. New radiocarbon dates for two stone-cist graves at Muuksi, northern Estonia. – Estonian Journal of Archaeology, 17: 2, 89–122. 
https://doi.org/10.3176/arch.2013.2.01

Laneman, M., Lang, V. & Saage, R. 2015. Aruanne põllukivihunniku ja matmispaiga arheoloogilisest kaevamisest Raplamaal Alu lähistel 2015. a suvel. Lisa 1. Manuscript at the Institute of History and Archaeology of the University of Tartu.

Lang, V. 1996. Muistne Rävala: muistised, kronoloogia ja maaviljelusliku asustuse kujunemine Loode-Eestis, eriti Pirita jõe alamjooksu piirkonnas. (Muinasaja teadus, 4.) Teaduste Akadeemia kirjastus, Tallinn.

Lang, V. 2000. Keskusest ääremaaks: viljelusmajandusliku asustuse kujunemine ja areng Vihasoo-Palmse piirkonnas Virumaal. (Muinasaja teadus, 7.) Teaduste Akadeemia Kirjastus, Tallinn.

Lang, V. 2007. The Bronze and Early Iron Ages in Estonia. (Estonian Archaeology, 3.) University of Tartu Press, Tartu.
https://doi.org/10.26530/OAPEN_423939

Lang, V. 2011. Traceless death. Missing burials in Bronze and Iron Age Estonia. – Estonian Journal of Archaeology, 15: 2, 109–129.
https://doi.org/10.3176/arch.2011.2.03

Lang, V. 2018. Läänemeresoome tulemised. (Muinasaja teadus, 28.) Tartu Ülikooli Kirjastus, Tartu.

Laul, S. 2001. Rauaaja kultuuri kujunemine Eesti kaguosas. (Muinasaja teadus, 9.) Tallinn.

Lightfoot, E., Naum, M., Kadakas, V. & Russow, E. 2016. The influence of social status and ethnicity on diet in mediaeval Tallinn as seen through stable isotope analysis. – Estonian Journal of Archaeology, 20: 1, 81–107.
https://doi.org/10.3176/arch.2016.1.04

Longin, R. 1971. New method of collagen extraction for radiocarbon dating. – Nature, 230: 5291, 241–42.
https://doi.org/10.1038/230241a0

Lõugas, V. 1970. Kõmsi I tarandkalme kaevamiskirjeldus. Manuscript at the Institute of History and Archaeology of the University of Tartu.

Lucquin, A., Colonese, A. C., Farrell, T. F. G. & Craig, O. E. 2016. Utilising phytanic acid diastereomers for the characterisation of archaeological lipid residues in pottery samples. – Tetrahedron Letters, 57: 6, 703–707. 
https://doi.org/10.1016/j.tetlet.2016.01.011

Oras, E., Lang, V., Rannamäe, E., Varul, L., Konsa, M., Limbo-Simovart, J., Vedru, G., Laneman, M., Malve, M. & Price, T. D. 2016. Tracing prehistoric migration: isotope analysis of Bronze and Pre-Roman Iron Age coastal burials in Estonia. – Estonian Journal of Archaeology, 20: 1, 3–32. 
https://doi.org/10.3176/arch.2016.1.01

Patrušev, V. S. & Halikov, A. H. 1982 = Патрушев В. С. & Халиков А. Х. Волжские ананьинцы (Старший Ахмыловский могильник). Наука, Москва.

Peets, J. 2003. The Power of Iron: Iron Production and Blacksmithy in Estonia and Neighbouring Areas in Prehistoric Period and the Middle Ages. (Muinasaja teadus, 12.) Teaduste Akadeemia Kirjastus, Tallinn.

Poska, A. & Saarse, L. 2006. New evidence of possible crop introduction to north-eastern Europe during the Stone Age. Cerealia pollen finds in connection with the Akali Neolithic settlement, East Estonia. – Vegetation History and Archaeobotany, 15: 3, 169–179.
https://doi.org/10.1007/s00334-005-0024-8

Price, T. D., Burton, J. H. & Bentley, R. A. 2002. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. – Archaeometry, 44: 1, 117–135.
https://doi.org/10.1111/1475-4754.00047

Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Oras, E. 2016. Isotopic provenancing of the Salme ship burials in Pre-Viking Age Estonia. – Antiquity, 90: 352, 1022–1037.
https://doi.org/10.15184/aqy.2016.106

Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Price, N. 2020. Human remains, context, and place of origin for the Salme, Estonia, boat burials. – Journal of Anthropological Archaeology, 58, 101149.
https://doi.org/10.1016/j.jaa.2020.101149

Price, T. D., Bläuer, A., Oras, E. & Ruohonen, J. 2021. Baseline 87Sr/86Sr values in southern Finland and isotopic proveniencing of the cemetery at Ravattula Ristimäki. – Fennoscandia Archaeologica, XXXVIII, 135–152.

Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. & Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). – Radiocarbon, 62: 4, 725–757. 
https://doi.org/10.1017/RDC.2020.41

Rieley, G. 1994. Derivatization of organic compounds prior to gas chromatographic- combustion-isotope ratio mass spectrometric analysis: identification of isotope fractionation processes. – Analyst, 119: 5, 915–919.
https://doi.org/10.1039/AN9941900915

Roberts, C. A. & Manchester, K. 2010. The Archaeology of Disease.  History Press, Stroud.

Roxburgh, M. A. 2023. A ‘Roman Brass’ Age: a transformation in copper-alloy composition in Estonia and northern Latvia during the Roman Iron Age, identified by pXRF.  – Estonian Journal of Archaeology, 27: 1, 3–29.
https://doi.org/10.3176/arch.2023.1.01

Rozenfel’dt, I. G. 1982 = Розенфельдт И. Г. Древности западной части Волго-Окского междуречья в VI–IX вв. Наука, Москва.

Schaefer, M., Black, S. M., Schaefer, M. C. & Scheuer, L. 2009. Juvenile Osteology. Academic Press, London.

Schoeninger, M. J. & DeNiro, M. J. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. – Geochimica et Cosmochimica Acta, 48: 4, 625–639.
https://doi.org/10.1016/0016-7037(84)90091-7

Schoeninger, M. J. & Moore, K. M. 1992. Bone stable isotope studies in archaeology. – Journal of World Prehistory, 6: 2, 247–296. 
https://doi.org/10.1007/BF00975551

Schwartz, J. H. 1995. Skeleton Keys: An Introduction to Human Skeletal Morphology, Development, and Analysis. Oxford University Press, New York. 

Sealy, J. C. 2001. Body tissue chemistry and palaeodiet. – Handbook of Archaeological Sciences. Eds D. R. Brothwell & A. M. Pollard. John Wiley & Sons, 269–279. 

Shepherd, D. J. 1997. The ritual significance of slag in Finnish Iron Age burials. –  Fennoscandia Archaeologica, 14, 13–22.

Šoštarić, R., Potrebica, H., Hršak, J. & Essert, S. 2017. Archaeobotanical components of grave goods in prehistoric tumuli 6 and 7 at the archaeological site of Kaptol-Gradci, near Požega (Croatia). – Acta Botanica Croatica, 76: 2, 183–190.
https://doi.org/10.1515/botcro-2017-0004

Tormey, W. 2017. Magical (and maligned) metalworkers: understanding representations of early and high medieval blacksmiths. – Magic and Magicians in the Middle Ages and the Early Modern Time. Eds A. Classen & M. Sandidge. De Gruyter, Berlin, Boston, 109–148.
https://doi.org/10.1515/9783110557725-002

Tsutaya, T. & Yoneda, M. 2015. Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: a review. – American Journal of Physical Anthropology, 156: S59, 2–21. 
https://doi.org/10.1002/ajpa.22657

Tvauri, A. 2012. The Migration Period, Pre-Viking Age, and Viking Age in Estonia. University of Tartu Press, Tartu.
https://doi.org/10.26530/OAPEN_423944

Back to Issue