1. Lange, T., Nandan, S., Pata, J., Tani, L., Veelken, C. Tau lepton identification and reconstruction: a new frontier for jet-tagging ML algorithms. Computer Physics Communications 298 (2024),
doi: 10.1016/j.cpc.2024.109095
2. Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J-R., Pierini, M., Girone, M. CMS kollaboratsiooni nimel. Machine Learning for Particle Flow Reconstruction at CMS. – 20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2021. J. Phys. Conf. Ser. 2438 012100,
doi: 10.1088/1742-6596/2438/1/012100
3. Pata, J., Duarte, J., Vlimant, J-R., Pierini, M., Spiropulu, M. MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks. Eur. Phys. J. C 81, 381 (2021),
doi: 10.1140/epjc/s10052-021-09158-w
4. Pata, J., Mokhtar, F., Duarte, J., Wulff, E., Pierini, M., Vlimant, J-R. CMS kollaboratsiooni nimel. Progress towards an improved particle flow algorithm at CMS with machine learning. – 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2022. CMS Detector Performance Note 2022,
URL: http://cds.cern.ch/record/2842375
5. Pata, J., Wulff, E., Mokhtar, F., Southwick, D., Zhang, M., Girone, M., Duarte, J.Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors. Nature Commun Phys 7, 124 (2024),
doi: 10.1038/s42005-024-01599-5
6. Tani, L., Seeba, N-N., Vanaveski, H., Pata, J., Lange, T. A unified machine learning approach for reconstructing hadronically decaying tau leptons. Computer Physics Communications 307 (2024),
doi: 10.1016/j.cpc.2024.109399