Aaseth, J., Skaug, M. A., Cao, Y., Andersen, O. 2015. Chelation in metal intoxication-Principles and paradigms. Journal of Trace Elements in Medicine and Biology, 31, 260–266.
https://doi.org/10.1016/j.jtemb.2014.10.001
Adlard, P. A., Bush, A. I. 2018. Metals and Alzheimer’s disease: How far have we come in the clinic? Journal of Alzheimers Disease, 62(3), 1369–1379.
https://doi.org/10.3233/jad-170662
Anand, R., Gill, K. D., Mahdi, A. A. 2014. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 76A, 7–50.
https://doi.org/10.1016/j.neuropharm.2013.07.004
Balsano, C., Porcu, C., Sideri, S. 2018. Is copper a new target to counteract the progression of chronic diseases? Metallomics, 10(12), 1712–1722.
https://doi.org/10.1039/c8mt00219c
Banci, L., Bertini, I., Ciofi-Baffoni, S., Kozyreva, T., Zovo, K., Palumaa, P. 2010. Affinity gradients drive copper to cellular destinations. Nature, 465(7298), 645–648.
http://dx.doi.org/10.1038/nature09018
Barber, R. G., Grenier, Z. A., Burkhead, J. L. 2021. Copper toxicity is not just oxidative damage: Zinc systems and insight from Wilson disease. Biomedicines, 9(3), 316.
https://doi.org/10.3390/biomedicines9030316
Barnham, K. J., Masters, C. L., Bush, A. I. 2004. Neurodegenerative diseases and oxidative stress. Nature Reviews in Drug Discovery, 3(3), 205–214.
https://doi.org/10.1038/nrd1330
Bonilla, E., Salazar, E., Villasmil, J. J., Villalobos, R., Gonzalez, M., Davila, J. O. 1984. Copper distribution in the normal human brain. Neurochemical Research, 9(11), 1543–1548.
https://doi.org/10.1007/bf00964589
Bucossi, S., Ventriglia, M., Panetta, V., Salustri, C., Pasqualetti, P., Mariani, S., Siotto, M., Rossini, P. M., Squitti, R. 2011. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. Journal of Alzheimers Disease, 24(1), 175–185.
https://doi.org/10.3233/jad-2010-101473
Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes J. R., Cox, D. W. 1993. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics, 5(4), 327–337.
https://doi.org/10.1038/ng1293-327
Bush, A. I. 2008. Drug development based on the metals hypothesis of Alzheimer’s disease. Journal of Alzheimers Disease, 15(2), 223–240.
https://doi.org/10.3233/jad-2008-15208
Christodoulou, J., Danks, D. M., Sarkar, B., Baerlocher, K. E., Casey, R., Horn, N., Tumer, Z., Clarke, J. T. 1998. Early treatment of Menkes disease with parenteral copper-histidine: long-term follow-up of four treated patients. American Journal of Medical Genetics, 76(2), 154–164.
https://doi.org/10.1002/(SICI)1096-8628(19980305)76:2<154::AID-AJMG9>3.3.CO;2-C
Cobine, P. A., Pierrel, F., Winge, D. R. 2006. Copper trafficking to the mito-chondrion and assembly of copper metalloenzymes. Biochimica et Biophysica Acta, 1763(7), 759–772.
https://doi.org/10.1016/j.bbamcr.2006.03.002
Czlonkowska, A., Litwin, T., Dusek, P., Ferenci, P., Lutsenko, S., Medici, V., Rybakowski, J. K., Weiss, K. H., Schilsky, M. L. 2018. Wilson disease. Nature Reviews Disease Primers, 4(1), 21.
https://doi.org/10.1038/s41572-018-0018-3
Fasae, K. D., Abolaji, A. O., Faloye, T. R., Odunsi, A. Y., Oyetayo, B. O., Enya, J. I., Rotimi, J. A., Akinyemi, R. O., Whitworth, A. J., Aschner, M. 2021. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology, 67, 126779.
https://doi.org/10.1016/j.jtemb.2021.126779
Faux, N. G., Ritchie, C. W., Gunn, A., Rembach, A., Tsatsanis, A., Bedo, J., Harrison, J., Lannfelt, L., Blennow, K., Zetterberg, H., Ingelsson, M., Masters, C. L., Tanzi, R. E., Cummings, J. L., Herd, C. M., Bush, A. I. 2010. PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. Journal of Alzheimers Disease, 20(2), 509–516.
https://doi.org/10.3233/jad-2010-1390
Hardy, J. A., Higgins, G. A. 1992. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185.
https://doi.org/10.1126/science.1566067
Jenagaratnam, L., McShane, R. 2006. Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, CD005380.
https://doi.org/10.1002/14651858.cd005380.pub2
Kabin, E., Dong, Y., Roy, S., Smirnova, J., Smith, J. W., Ralle, M., Summers, K., Yang, H., Dev, S., Wang, Y., Devenney, B., Cole, R. N., Palumaa, P., Lutsenko, S. 2023. α-lipoic acid ameliorates consequences of copper overload by up-regulating selenoproteins and decreasing redox misbalance. Proceedings of the National Academy Sciences of the USA, 120(40), e2305961120.
https://doi.org/10.1073/pnas.2305961120
Kessler, H., Bayer, T. A., Bach, D., Schneider-Axmann, T., Supprian, T., Herrmann, W., Haber, M., Multhaup, G., Falkai, P., Pajonk, F. G. 2008a. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. Journal of Neural Transmission (Vienna), 115(8), 1181–1187.
https://doi.org/10.1007/s00702-008-0080-1
Kessler, H., Pajonk, F. G., Bach, D., Schneider-Axmann, T., Falkai, P., Herrmann, W., Multhaup, G., Wiltfang, J., Schafer, S., Wirths, O., Bayer, T. A. 2008b. Effect of copper intake on CSF parameters in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. Journal of Neural Transmission (Vienna), 115(12), 1651–1659.
https://doi.org/10.1007/s00702-008-0136-2
Kirsipuu, T., Zadoroznaja, A., Smirnova, J., Friedemann, M., Plitz, T., Tõugu, V., Palumaa, P. 2020. Copper(II)-binding equilibria in human blood. Scientific Reports, 10(1), 5686.
https://doi.org/10.1038/s41598-020-62560-4
Kreuder, J., Otten, A., Fuder, H., Tumer, Z., Tonnesen, T., Horn, N., Dralle, D. 1993. Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. European Journal of Pediatrics, 152(10), 828–832.
https://doi.org/10.1007/bf02073380
Lannfelt, L., Blennow, K., Zetterberg, H., Batsman, S., Ames, D., Harrison, J., Masters, C. L., Targum, S., Bush, A. I., Murdoch, R., Wilson, J., Ritchie, C. W. 2008. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurology, 7(9), 779–786.
https://doi.org/10.1016/s1474-4422(08)70167-4
Li, W. J., Chen, C., You, Z. F., Yang, R. M., Wang, X. P. 2016. Current drug managements of Wilson’s disease: From west to east. Current Neuropharmacology, 14(4), 322–325.
https://doi.org/10.2174/1570159x14666151130222427
Li, D. D., Zhang, W., Wang, Z. Y., Zhao, P. 2017. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease: A meta-analysis of case-control studies. Frontiers Aging Neuroscience, 9, 300.
https://doi.org/10.3389/fnagi.2017.00300
Linder, M. C. 2016. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 8(9), 887–905.
https://doi.org/10.1039/C6MT00103C
Litwin, T., Dziezyc, K., Czlonkowska, A. 2019. Wilson disease-treatment perspectives. Annals of Translational Medicine, 7(Suppl 2), S68.
https://doi.org/10.21037/atm.2018.12.09
Liu, Y., Nguyen, M., Robert, A., Meunier, B. 2019. Metal ions in Alzheimer’s disease: A key role or not? Accounts of Chemical Research, 52(7), 2026–2035.
https://doi.org/10.1021/acs.accounts.9b00248
Madaric, A., Ginter, E., Kadrabova, J. 1994. Serum copper, zinc and copper/zinc ratio in males: influence of aging. Physiological Research, 43(2), 107–111.
Meloni, G., Faller, P., Vasak, M. 2007. Redox silencing of copper in metal-linked neurodegenerative disorders: reaction of Zn7metallothionein-3 with Cu2+ ions. Journal of Biological Chemistry, 282(22), 16068–16078.
https://doi.org/10.1074/jbc.m701357200
Metsla, K., Kirss, S., Laks, K., Sildnik, G., Palgi, M., Palumaa, T., Tõugu, V., Palumaa, P. 2022. α-Lipoic acid has the potential to normalize copper metabolism, which is dysregulated in Alzheimer’s disease. Journal of Alzheimers Disease, 85(2), 715–728.
https://doi.org/10.3233/jad-215026
Patil, M., Sheth, K. A., Krishnamurthy, A. C., Devarbhavi, H. 2013. A review and current perspective on Wilson disease. Journal of Clinical and Experimental Hepatology, 3(4), 321–336.
https://doi.org/10.1016/j.jceh.2013.06.002
Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., O’Halloran, T. V. 1999. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 284(5415), 805–808.
https://doi.org/10.1126/science.284.5415.805
Robert, A., Liu, Y., Nguyen, M., Meunier, B. 2015. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s -disease. Accounts of Chemical Research, 48(5), 1332–1339.
https://doi.org/10.1021/acs.accounts.5b00119
Roberts, E. A., Schilsky, M. L. 2008. Diagnosis and treatment of Wilson -disease: an update. Hepatology, 47(6), 2089–2111.
https://doi.org/10.1002/hep.22261
Robinson, N. J., Winge, D. R. 2010. Copper metallochaperones. Annual Reviews in Biochemistry, 79, 537–562.
https://doi.org/10.1146/annurev-biochem-030409-143539
Rodriguez-Castro, K. I., Hevia-Urrutia, F. J., Sturniolo, G. C. 2015. Wilson’s disease: A review of what we have learned. World Journal of Hepatology, 7(29), 2859–2870.
https://doi.org/10.4254/wjh.v7.i29.2859
Sampson, E. L., Jenagaratnam, L., McShane, R. 2014. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database of -Systematic Reviews, (2), CD005380.
https://doi.org/10.1002/14651858.CD005380.pub5
Samygina, V. R., Sokolov, A. V., Bourenkov, G., Petoukhov, M. V., Pulina, M. O., Zakharova, E. T., Vasilyev, V. B., Bartunik, H., Svergun, D. I. 2013. Cerulo-plasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One, 8(7), e67145.
https://doi.org/10.1371/journal.pone.0067145
Schrag, M., Mueller, C., Oyoyo, U., Smith, M. A., Kirsch, W. M. 2011. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Progress in Neurobiology, 94(3), 296–306.
https://doi.org/10.1016/j.pneurobio.2011.05.001
Selkoe, D. J. 2011. Alzheimer’s disease. Cold Spring Harbor Perspectives in Biology, 3(7), pii: a004457.
https://doi.org/10.1101/cshperspect.a004457
Selkoe, D. J., Hardy, J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.
https://doi.org/10.15252/emmm.201606210
Smirnova, J., Kabin, E., Jarving, I., Bragina, O., Tõugu, V., Plitz, T., Palumaa, P. 2018. Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Scientific Reports, 8(1), 1463.
https://doi.org/10.1038/s41598-018-19873-2
Squitti, R., Rossini, P. M., Cassetta, E., Moffa, F., Pasqualetti, P., Cortesi, M., Colloca, A., Rossi, L., Finazzi-Agro, A. 2002. d-Penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. European Journal of Clinical Investigation, 32(1), 51–59.
https://doi.org/10.1046/j.1365-2362.2002.00933.x
Squitti, R., Ventriglia, M., Simonelli, I., Bonvicini, C., Costa, A., Perini, G., Binetti, G., Benussi, L., Ghidoni, R., Koch, G., Borroni, B., Albanese, A., Sensi, S. L., Rongioletti, M. 2021. Copper imbalance in Alzheimer’s disease: meta-analysis of serum, plasma, and brain specimens, and replication study evaluating ATP7B gene variants. Biomolecules, 11(7).
https://doi.org/10.3390/biom11070960
Tanzi, R. E., Petrukhin, K., Chernov, I., Pellequer, J. L., Wasco, W., Ross, B., Romano, D. M., Parano, E., Pavone, L., Brzustowicz, L. M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Pirastu, M., Gusella, J. F., Evgrafov, O., Penchaszadeh, G. K., Honig, B., Edelman, I. S., Soares, M. B., Scheinberg, I. H., Gilliam, T. C. 1993. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics, 5(4), 344–350.
https://doi.org/10.1038/ng1293-344
Tümer, Z., Moller, L. B. 2010. Menkes disease. European Journal of Human Genetics, 18(5), 511–518.
https://doi.org/10.1038/ejhg.2009.187
Vaher, M., Romero-Isart, N., Vasak, M., Palumaa, P. 2001. Reactivity of Cd7-metallothionein with Cu(II) ions: evidence for a cooperative formation of Cd3,Cu(I)5-metallothionein. Journal of Inorganic Biochemistry, 83(1), 1–6.
https://doi.org/10.1016/s0162-0134(00)00183-5
Vairo, F. P. E., Chwal, B. C., Perini, S., Ferreira, M. A. P., de Freitas Lopes, A. C., Saute, J. A. M. 2019. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Molecular Genetics and Metabolism, 126(1), 6–13.
https://doi.org/10.1016/j.ymgme.2018.12.005
Walshe, J. M. 1982. Treatment of Wilson’s disease with trientine (triethylene tetramine) dihydrochloride. Lancet, 319(8273), 643–647.
https://doi.org/10.1016/s0140-6736(82)92201-2
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., Turner, N. D. 2004. Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492.
https://doi.org/10.1093/jn/134.3.489
Xu, J., Church, S. J., Patassini, S., Begley, P., Waldvogel, H. J., Curtis, M. A., Faull, R. L. M., Unwin, R. D., Cooper, G. J. S. 2017. Evidence for widespread, severe brain copper deficiency in Alzheimer’s dementia. Metallomics, 9(8), 1106–1119.
https://doi.org/10.1039/c7mt00074j