ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
EESTI VABARIIGI PREEMIAD
EESTI VABARIIGI PREEMIAD
ISSN 1406-2321 (print)
ISSN 2674-3019 (electronic)
Keemilise sideme energia tootmisest ja ülekande regulatsioonist mitokondrites patoloogiate korral; pp. 78–91
PDF | https://doi.org/10.3176/evp.2023.04

Author
Tuuli Käämbre
References

Abrigo, J., Simon, F., Cabrera, D., Vilos, C., Cabello-Verrugio, C. 2019. Mito-chondrial dysfunction in skeletal muscle pathologies. Current Protein & Peptide Science, 20(6); 536–546. 
https://doi.org/10.2174/1389203720666190402100902

Desbats, M. A., Giacomini, I., Prayer-Galetti, T., Montopoli, M. 2020. Metabolic plasticity in chemotherapy resistance. Frontiers in Oncology, 10, 281. 
https://doi.org/10.3389/fonc.2020.00281

Dong, L-F., Rohlena, J., Zobalova, R., Nahacka, Z., Rodriguez, A-M., Berridge, M. V., Neuzil, J. 2023. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. Journal of Cell Biology, 222(3), e202211044. 
https://doi.org/10.1083/jcb.202211044

Eimre, M., Kasvandik, S., Ivask, M., Kõks, S. 2018. Proteomic dataset of wolframin-deficient mouse heart and skeletal muscles. Data Brief, 21, 616–619. 
https://doi.org/10.1016/j.dib.2018.10.015

Klepinin, A., Zhang, S., Klepinina, L., Rebane-Klemm, E., Terzic, A., Käämbre, T., Dzeja, P. 2020. Adenylate kinase and metabolic signaling in cancer cells. Frontiers in Oncology, 10, 660. 
https://doi.org/10.3389/fonc.2020.00660

Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., Käämbre, T. 2022. Stable isotobe tracing uncovers reduced γ/β-ATP turnover and metabolic flux through mitochondrial-linked phosphotransfer circuits in aggressive breast cancer cells. Frontiers in Oncology, 12, 892195. 
https://doi.org/10.3389/fonc.2022.892195

Klepinina, L., Klepinin, A., Truu, L., Chekulayev, V., Vija, H., Kuus, K., Teino, I., Pook, M., Maimets, T., Käämbre, T. 2021. Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One, 16(1), e0245348. 
https://doi.org/10.1371/journal.pone.0245348

Koit, A., Timohhina, N., Truu, L., Chekulayev, V., Gudlawar, S., Shevchuk, I., Lepik, K., Mallo, L., Kutner, R., Valvere, V., Käämbre, T. 2020. Metabolic and OXPHOS activities quantified by temporal ex vivo analysis display patient-specific metabolic vulnerabilities in human breast cancers. Frontiers in Oncology, 10, 1053. 
https://doi.org/10.3389/fonc.2020.01053

Mado, K., Chekulayev, V., Shevchuk, I., Puurand, M., Tepp, K., Käämbre, T. 2019. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. American Journal of Physiology-Cell Physiology, 316(5), C657–C667. 
https://doi.org/10.1152/ajpcell.00303.2018

Makrecka-Kuka, M., Liepinsh, E., Murray, A. J., Lemieux, H., Dambrova, M., Tepp, K., Puurand, M., Käämbre, T., Han, W. H., de Goede, P., O’Brien, K. A., Turan, B., Tuncay, E., Olgar, Y., Rolo, A. P., Palmeira, C. M., Boardman, N. T., Wüst, R. C. I., Larsen, T. S. 2020. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiologica (Oxford), 228(3), e13430. 
https://doi.org/10.1111/apha.13430

McGuirk, S., Audet-Delage, Y., St-Pierre, J. 2020. Metabolic fitness and plasticity in cancer progression. Trends in Cancer, 6(1), 49–61. 
https://doi.org/10.1016/j.trecan.2019.11.009

Palm, W. 2021. Metabolic plasticity allows cancer cells to thrive under nutrient starvation. Proceedings of the National Academy of Sciences of the United -States of America, 118(14), e2102057118. 
https://doi.org/10.1073/pnas.2102057118

Paudel, B. B., Quaranta, V. 2019. Metabolic plasticity meets gene regulation. Proceedings of the National Academy of Sciences of the United States of -America, 116(9), 3370–3372. 
https://doi.org/10.1073/pnas.1900169116

Puurand, M., Tepp, K., Klepinin, A., Klepinina, L., Shevchuk, I., Käämbre, T. 2018. Intracellular energy-transfer networks and high-resolution respirometry: A convenient approach for studying their function. International Journal of Molecular Sciences, 19(10), 2933. 
https://doi.org/10.3390/ijms19102933

Puurand, M., Tepp, K., Timohhina, N., Aid, J., Shevchuk, I., Chekulayev, V., Käämbre, T. 2019. Tubulin βII and βIII isoforms as the regulators of VDAC -channel permeability in health and disease. Cells, 8(3), 239. 
https://doi.org/10.3390/cells8030239

Rebane-Klemm, E., Truu, L., Reinsalu, L., Puurand, M., Shevchuk, I., Chekulayev, V., Timohhina, N., Tepp, K., Bogovskaja, J., Afanasjev, V., Suurmaa, K., Valvere, V., Käämbre, T. 2020. Mitochondrial respiration in KRAS and BRAF mutated colorectal tumors and polyps. Cancers (Basel), 12(4), 815. 
https://doi.org/10.3390/cancers12040815

Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., Käämbre, T. 2021. Energy metabolic plasticity of colorectal cancer cells as a determinant of tumor growth and metastasis. Frontiers in Oncology, 11, 698951. 
https://doi.org/10.3389/fonc.2021.698951

Tepp, K., Aid-Vanakova, J., Puurand, M., Timohhina, N., Reinsalu, L., Tein, K., Plaas, M., Shevchuk, I., Terasmaa, A., Käämbre, T. 2022. Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochemistry and Biophysics Reports, 30, 101250. 
https://doi.org/10.1016/j.bbrep.2022.101250

Back to Issue