Ainsworth, E. A., Long, S. P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–371.
https://doi.org/10.1111/j.1469-8137.2004.01224.x
Bishop, K. A., Leakey, A. D. B., Ainsworth, E. A. 2014. How seasonal tempera- ture or water inputs affect the relative response of C3 crops to elevated [CO2]: A global analysis of open top chamber and free air CO2 enrichment studies. Food and Energy Security, 3, 33–45.
https://doi.org/10.1002/fes3.44
Brodribb, T. J., McAdam, S. A. M. 2011. Passive origins of stomatal control in vascular plants. Science, 331(6017), 582–585.
https://doi.org/10.1126/science.1197985
Brosché, M., Merilo, E., Mayer, F., Pechter, P., Puzõrjova, I., Brader, G., Kan- gasjärvi, J., Kollist, H. 2010. Natural variation in ozone sensitivity among Arabi- dopsis thaliana accessions and its relation to stomatal conductance. Plant, Cell and Environment, 33(6), 914−925.
https://doi.org/10.1111/j.1365-3040.2010.02116.x
Cai, S., Chen, G., Wang, Y., Huang, Y., Marchant, D. B., Wang, Y., Yang, Q., Dai, F., Hills, A., Franks, P. J., Nevo, E., Soltis, D. E., Soltis, P. S., Sessa, E., Wolf, P. G., Xue, D., Zhang, G., Pogson, B. J., Blatt, M. R. 2017. Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology, 174(2), 732–747.
https://doi.org/10.1104/pp.16.01848
Chater, C., Kamisugi, Y., Movahedi, M., Fleming, A., Cuming, A. C., Gray, J. E., Beerling, D. J. 2011. Regulatory mechanism controlling stomatal behavior con- served across 400 million years of land plant evolution. Current Biology, 21(12), 1025–1029.
https://doi.org/10.1016/j.cub.2011.04.032
Darwin, F. 1898. Observations on stomata. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 190, 531–621.
https://doi.org/10.1098/rstb.1898.0009
Dittrich, M., Mueller, H. M., Bauer, H., Peirats-Llobet, M., Rodriguez, P. L., Geilfus, C. M., Carpentier, S. C., Al Rasheid, K. A. S., Kollist, H., Merilo, E., Herrmann, J., Muller, T., Ache, P., Hetherington, A. M., Hedrich, R. 2019. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stoma- tal acclimation and closure signal integration. Nature Plants, 5(9), 1002–1011.
https://doi.org/10.1038/s41477-019-0490-0
Faralli, M., Lawson, T. 2020. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? Plant Journal, 101(3), 518–528.
https://doi.org/10.1111/tpj.14568
Hauser, F., Waadt, R., Schroeder, J. I. 2011. Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology, 21(9), R346–R355.
https://doi.org/10.1016/j.cub.2011.03.015
Hetherington, A. M., Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901–908.
https://doi.org/10.1038/nature01843
Hsu, P., Takahashi, T., Munemasa, S., Merilo, E., Laanemets, K., Waadt, R., Pater, D., Kollist, H., Schroeder, J. I. 2018. Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downst- ream of OST1 Kinase. Proceedings of the National Academy of Sciences of the United States of America, 115(42), E9971–E9980.
https://doi.org/10.1073/pnas.1809204115
Hsu, P-K., Takahashi, Y., Merilo, E., Costa, A., Zhang, L., Kernig, K., Lee, K. H., Schroeder, J. I. 2021. Raf-like kinases and receptor-like pseudokinase GHR1 are required for stomatal vapor pressure difference response. Proceedings of the National Academy of Sciences of the United States of America, 118(47), e2107280118.
https://doi.org/10.1073/pnas.2107280118
Hõrak, H., Kollist, H., Merilo, E. 2017. Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiology, 174(2), 672–679.
https://doi.org/10.1104/pp.17.00120
Jalakas, P., Merilo, E., Kollist, H., Brosché, M. 2018a. ABA-mediated regula- tion of stomatal density is OST1-independent. Plant Direct, 2(9), e00082.
https://doi.org/10.1002/pld3.82
Jalakas, P., Tulva, I., Kangor, T., Sooväli, P., Rasulov, B., Tamm, Ü., Koppel, M., Kollist, H., Merilo, E. 2018b. Gas exchange-yield relationships of malting barley genotypes treated with fungicides and biostimulants. European Journal of Agronomy, 99, 129−137.
https://doi.org/10.1016/j.eja.2018.07.001
Jalakas, P., Nuhkat, M., Vahisalu, T., Merilo, E., Brosché, M., Kollist, H. 2021a. Combined action of guard cell plasma membrane rapid- and slow-type anion channels in stomatal regulation. Plant Physiology, 187(4), 2126–2133.
https://doi.org/10.1093/plphys/kiab202
Jalakas, P., Takahashi, Y., Waadt, R., Schroeder, J. I. S., Merilo, E. 2021b. Molecu- lar mechanism of stomatal closure in response to rising vapor pressure deficit. Viewpoint article. New Phytologist, 232(2), 468–475.
https://doi.org/10.1111/nph.17592
Kollist, H., Nuhkat, M., Roelfsema, M. R. G. 2014. Closing gaps: linking elements that control stomatal movement. New Phytologist, 203, 44–62.
https://doi.org/10.1111/nph.12832
Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., Mittler, R. 2019. Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. Trends in Plant Science, 24(1), 25−37.
https://doi.org/10.1016/j.tplants.2018.10.003
Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., Gonzalez- Guzman, M., Rodriguez, P., Shroeder, J. I., Brosché, M., Kollist, H. 2013. PYR/ RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiology, 162(3), 1652−1668.
https://doi.org/10.1104/pp.113.220608
Merilo, E., Jõesaar, I., Brosché, M., Kollist, H. 2014. To open or to close: species- specific stomatal responses to simultaneously applied opposing environmental factors. New Phytologist, 202(2), 499−508.
https://doi.org/10.1111/nph.12667
Merilo, E., Jalakas, P., Kollist, H., Brosché, M. 2015a. The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, ele- vated CO2 and exogenous ABA. Molecular Plant, 8(4), 657−659.
https://doi.org/10.1016/j.molp.2015.01.014
Merilo, E., Jalakas, P., Laanemets, K., Mohammadi, O., Hõrak, H., Kollist, H., Brosché, M. 2015b. Abscisic acid transport and homeostasis in the context of stoma- tal regulation. Molecular Plant, 8(9), 1321–1333.
https://doi.org/10.1016/j.molp.2015.06.006
Merilo, E., Yarmolinsky, D., Jalakas, P., Parik, H., Tulva, I., Rasulov, B., Kilk, K., Kollist, H. 2018. Stomatal VPD response: there is more to the story than ABA. Plant Physiology, 176(1), 851–864.
https://doi.org/10.1104/pp.17.00912
Mittelheuser, C. J., van Steveninck, R. F. M. 1969. Stomatal closure and inhibi- tion of transpiration induced by (RS)-abscisic acid. Nature, 221(5177), 281–282.
https://doi.org/10.1038/221281a0
Moore, F. C., Lobel, D. B. 2015. The fingerprint of climate trends on European crop yields. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2670–2675.
https://doi.org/10.1073/pnas.1409606112
Morales, L. O., Shapiguzov, A., Safronov, O., Leppälä, J., Vaahtera, L., Yarmolinsky, D., Kollist, H., Brosché, M. 2021. Ozone responses in Arabidopsis: beyond stomatal conductance. Plant Physiology, 186(1), 180–192.
https://doi.org/10.1093/plphys/kiab097
Nuhkat, M., Brosché, M., Stoelzle-Feix, S., Dietrich, P., Hedrich, R., Roelfsema, M. R. G., Kollist, H. 2021. Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells’ ozone response. New Phytologist, 232(4), 1692–1702.
https://doi.org/10.1111/nph.17711
Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., Kollist, H., Albert, A., Rodriguez, P. L. 2013. The PYL4 A194T mutant unco- vers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiology, 163(1), 441−455.
https://doi.org/10.1104/pp.113.224162
Roche, D. 2015. Stomatal conductance is essential for higher yield poten- tial of C3 crops. Critical Reviews in Plant Sciences, 34(4), 429–453.
https://doi.org/10.1080/07352689.2015.1023677
Ruszala, E. M., Beerling, D. J., Franks, P. J., Chater, C., Casson, S. A., Gray, J. E., Hetherington, A. M. 2011. Land plants acquired active stomatal control early in their evolutionary history. Current Biology, 21(12), 1030–1035.
https://doi.org/10.1016/j.cub.2011.04.044
Sun, Y., Harpazi, B., Wijerathna-Yapa, A., Merilo, E., de Vries, J., Michaeli, D., Gal, M., Cuming, A. C., Kollist, H., Mosquna, A. 2020. A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24892–24899.
https://doi.org/10.1073/pnas.1914480116
Tõldsepp, K., Zhang, J., Takahashi, Y., Sindarovska, Y., Hõrak, H., Ceciliato, P. H. O., Koolmeister, K., Wang, Y-S., Vaahtera, L., Jakobson, L., Yeh, C-Y., Park, J., Brosché , M., Kollist, H., Schroeder, J. I. 2018. Mitogen- activated protein kinases MPK4 and MPK12 are key components mediating CO2-induced stomatal movements. The Plant Journal, 96(5), 1018−1035.
https://doi.org/10.1111/tpj.14087
Vaidya, A., Peterson, F., Yarmolinsky, D., Merilo, E., Verstraeten, I., Park, S. Y., Elzinga, D., Kaundal, A., Helander, J., Lozano-Juste, J., Otani, M., Wu, K., Jensen, D., Kollist, H., Volkmann, B., Cutler, S. 2017. A rationally designed agonist defines subfamily IIIA Abscisic Acid receptors as critical targets for manipulating transpiration. ACS Chemical Biology, 12(11), 2842−2848.
https://doi.org/10.1021/acschembio.7b00650
Zamora, O., Schulze, S., Azoulay-Shemer, T., Parik, H., Unt, J., Brosché, M., Schroeder, J. I., Yarmolinsky, D., Kollist, H. 2021 Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2, abscisic acid, darkness, vapor pressure deficit and ozone. The Plant Journal, 108(1), 134–150.
https://doi.org/10.1111/tpj.15430
Zhang, L., Takahashi, Y., Hsu, P. K., Kollist, H., Merilo, E., Krysan, P. J., Schroeder, J. I. 2020. FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure. eLife, 9, e56351.
https://doi.org/10.7554/eLife.56351