ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
EESTI VABARIIGI PREEMIAD
EESTI VABARIIGI PREEMIAD
ISSN 1406-2321 (print)
ISSN 2674-3019 (electronic)
TÕRKSATE POLÜSAHHARIIDIDE ENSÜMAATILINE LAGUNDAMINE; pp. 109–129
PDF | 10.3176/evp.2022.04

Author
Priit Väljamäe
References

Bissaro, B., Røhr, Å. K., Skaugen, M., Forsberg, Z., Horn, S. J., Vaaje-Kolstad, G., Eijsink, V. G. H. 2017. Oxidative cleavage of polysaccharides by monocop- per enzymes depends on H2O2. Nature Chemical Biology, 13(10), 1123−1128.
https://doi.org/10.1038/nchembio.2470

Chandel, A. K., Singh, O. V. 2011. Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of „biofuel“. Applied Micro- biology and Biotechnology, 89(5), 1289−1303.
https://doi.org/10.1007/s00253-010-3057-6

Doherty, W. O. S., Mousavioun, P., Fellows, C. M. 2011. Value-adding to cel- lulosic ethanol: Lignin polymers. Industrial Crops and Products, 33(2), 259–276.
https://doi.org/10.1016/j.indcrop.2010.10.022

Eijsink, V. G. H., Petrovic, D., Forsberg, Z., Mekasha, S., Røhr, Å. K., Varnai, A., Bissaro, B., Vaaje-Kolstad, G. 2019. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnology for Biofuels12, 58.
https://doi.org/10.1186/s13068-019-1392-0

Glasser, W. G. 2019. About making lignin great again – some lessons from the past. Frontiers in Chemistry, 7, 565.
https://doi.org/10.3389/fchem.2019.00565

Harris, P. V., Welner, D., McFarland, K. C., Re, E., Poulsen, J-C.N., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., Lo Leggio, L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry, 49(15), 3305–3316.
https://doi.org/10.1021/bi100009p

Ifuku, S., Saimoto, H. 2012. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale, 4, 3308.
https://doi.org/10.1039/C2NR30383C

Jalak, J., Väljamäe, P. 2010. Mechanism of initial rapid rate retardation in cello- biohydrolase catalyzed cellulose hydrolysis. Biotechnology and Bioengineering, 106(6), 871–883.
https://doi.org/10.1002/bit.22779

Jalak, J., Väljamäe, P. 2014. Multi-mode binding of cellobiohydrolase Cel7A from Trichoderma reesei to cellulose. PLoS One, 9(9), e108181.
https://doi.org/10.1371/journal.pone.0108181

Jalak, J., Kurašin, M., Teugjas, H., Väljamäe, P. 2012. Endo-exo synergism in cellulose hydrolysis revisited. Journal of Biological Chemistry, 287(34), 28802−28815.
https://doi.org/10.1074/jbc.M112.381624

Johansen, K. S. 2016. Discovery and industrial applications of lytic poly- saccharide mono-oxygenases. Biochemical Society Transactions, 44(1), 143−149.
https://doi.org/10.1042/BST20150204

Kari, J., Olsen, J., Borch, K., Cruys-Bagger, N., Jensen, K., Westh, P. 2014. Kine- tics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. Journal of Biological Chemistry, 289(47), 32459−32468.
https://doi.org/10.1074/jbc.M114.604264

Kont, R., Kurašin, M., Teugjas, H., Väljamäe, P. 2013. Strong cellulase inhibitors from hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6, 135.
https://doi.org/10.1186/1754-6834-6-135

Kont, R., Pihlajaniemi, V., Borisova, A. S., Aro, N., Marjamaa, K., Loogen, J., Büchs, J., Eijsink, V. G. H., Kruus, K., Väljamäe, P. 2019. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Biotechnology for Biofuels, 12, 235.
https://doi.org/10.1186/s13068-019-1578-5

Kont, R., Bissaro, B., Eijsink, V. G. H., Väljamäe, P. 2020. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nature Communications, 11(1), 5786.
https://doi.org/10.1038/s41467-020-19561-8

Kont, R., Pihlajaniemi, V., Niemelä, K., Kuusk, S., Marjamaa, K., Väljamäe, P. 2021. H2O2 in liquid fractions of hydrothermally pretreated biomasses: impli- cations of lytic polysaccharide monooxygenases. ACS Sustainable Chemistry & Engineering, 9(48), 16220−16231.
https://doi.org/10.1021/acssuschemeng.1c05491

Kurašin, M., Kuusk, S., Kuusk, P., Sørlie, M., Väljamäe, P. 2015. Slow off-rates and strong product binding are required for processivity and efficient degradation of recalcitrant chitin by family 18 chitinases. Journal of Biological Chemistry, 290(48), 29074−29085. 
https://doi.org/10.1074/jbc.M115.684977

Kurašin, M., Väljamäe, P. 2011. Processivity of cellobiohydrolases is limited by the substrate. Journal of Biological Chemistry, 286(1), 169–177.
https://doi.org/10.1074/jbc.M110.161059

Kuusk, S., Väljamäe, P. 2021. Kinetics of H2O2-driven catalysis by a lytic poly- saccharide monooxygenase from the fungus Trichoderma reesei. Journal of Biological Chemistry, 297(5), 101256. 
https://doi.org/10.1016/j.jbc.2021.101256

Kuusk, S., Sørlie, M., Väljamäe, P. 2015. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. Journal of Biological Chemistry, 290(18), 11678−11691. 
https://doi.org/10.1074/jbc.M114.635631

Kuusk, S., Sørlie, M., Väljamäe, P. 2017. Human chitotriosidase is an endo-proces- sive enzyme. PLoS One, 12(1), e0171042. 
https://doi.org/10.1371/journal.pone.0171042

Kuusk, S., Bissaro, B., Kuusk, P., Forsberg, Z., Eijsink, V. G. H., Sørlie, M., Väljamäe, P. 2018. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 293(2), 523−531. 
https://doi.org/10.1074/jbc.M117.817593

Kuusk, S., Kont, R., Kuusk, P., Heering, A., Sørlie, M., Bissaro, B., Eijsink, V. G. H., Väljamäe, P. 2019. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 294(5), 1516−1528.
https://doi.org/10.1074/jbc.RA118.006196

Martin, C., Dixit, P., Momayez, F., Jönsson, L. J. 2022. Hydrothermal pretreatment of lignocellulosic feedstocks to facilitate biochemical conversion. Frontiers in Bioengineering and Biotechnology, 10, 846592.
https://doi.org/10.3389/fbioe.2022.846592

Payne, C. M., Knott, B. C., Mayes, H. B., Hansson, H., Himmel, M. E., Sandgren, M., Ståhlberg, J., Beckham, G. T. 2015. Fungal cellulases. Chemical Reviews, 115(3), 1308−1448.
https://doi.org/10.1021/cr500351c

Raud, E. 1984. Naksitrallid. Eesti Raamat. 

Teugjas, H., Väljamäe, P. 2013. Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnology for Biofuels, 6(1), 104. 
https://doi.org/10.1186/1754-6834-6-104

Vaaje-Kolstad, G., Horn, S. J., van Aalten, D. M. F., Synstad, B., Eijsink, V. G. H. 2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. Journal of Biological Chemistry, 280(31), 28492−28497.
https://doi.org/10.1074/jbc.M504468200

Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sørlie, M., Eijsink, V. G. H. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219–222.
https://doi.org/10.1126/science.1192231

Velleste, R., Teugjas, H., Väljamäe, P. 2010. Reducing end-specific fluo- rescence labeled celluloses for cellulase mode of action. Cellulose, 17, 125–138. 
https://doi.org/10.1007/s10570-009-9356-3

Väljamäe, P. 2002. The Kinetics of Cellulose Enzymatic Hydrolysis: Implications of the Synergism Between Enzymes. Uppsala. (Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology; 781). 
https://www.diva-portal.org/smash/get/diva2:162227/fulltext01.pdf

Back to Issue