Bissaro, B., Røhr, Å. K., Skaugen, M., Forsberg, Z., Horn, S. J., Vaaje-Kolstad, G., Eijsink, V. G. H. 2017. Oxidative cleavage of polysaccharides by monocop- per enzymes depends on H2O2. Nature Chemical Biology, 13(10), 1123−1128.
https://doi.org/10.1038/nchembio.2470
Chandel, A. K., Singh, O. V. 2011. Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of „biofuel“. Applied Micro- biology and Biotechnology, 89(5), 1289−1303.
https://doi.org/10.1007/s00253-010-3057-6
Doherty, W. O. S., Mousavioun, P., Fellows, C. M. 2011. Value-adding to cel- lulosic ethanol: Lignin polymers. Industrial Crops and Products, 33(2), 259–276.
https://doi.org/10.1016/j.indcrop.2010.10.022
Eijsink, V. G. H., Petrovic, D., Forsberg, Z., Mekasha, S., Røhr, Å. K., Varnai, A., Bissaro, B., Vaaje-Kolstad, G. 2019. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnology for Biofuels, 12, 58.
https://doi.org/10.1186/s13068-019-1392-0
Glasser, W. G. 2019. About making lignin great again – some lessons from the past. Frontiers in Chemistry, 7, 565.
https://doi.org/10.3389/fchem.2019.00565
Harris, P. V., Welner, D., McFarland, K. C., Re, E., Poulsen, J-C.N., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., Lo Leggio, L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry, 49(15), 3305–3316.
https://doi.org/10.1021/bi100009p
Ifuku, S., Saimoto, H. 2012. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale, 4, 3308.
https://doi.org/10.1039/C2NR30383C
Jalak, J., Väljamäe, P. 2010. Mechanism of initial rapid rate retardation in cello- biohydrolase catalyzed cellulose hydrolysis. Biotechnology and Bioengineering, 106(6), 871–883.
https://doi.org/10.1002/bit.22779
Jalak, J., Väljamäe, P. 2014. Multi-mode binding of cellobiohydrolase Cel7A from Trichoderma reesei to cellulose. PLoS One, 9(9), e108181.
https://doi.org/10.1371/journal.pone.0108181
Jalak, J., Kurašin, M., Teugjas, H., Väljamäe, P. 2012. Endo-exo synergism in cellulose hydrolysis revisited. Journal of Biological Chemistry, 287(34), 28802−28815.
https://doi.org/10.1074/jbc.M112.381624
Johansen, K. S. 2016. Discovery and industrial applications of lytic poly- saccharide mono-oxygenases. Biochemical Society Transactions, 44(1), 143−149.
https://doi.org/10.1042/BST20150204
Kari, J., Olsen, J., Borch, K., Cruys-Bagger, N., Jensen, K., Westh, P. 2014. Kine- tics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. Journal of Biological Chemistry, 289(47), 32459−32468.
https://doi.org/10.1074/jbc.M114.604264
Kont, R., Kurašin, M., Teugjas, H., Väljamäe, P. 2013. Strong cellulase inhibitors from hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6, 135.
https://doi.org/10.1186/1754-6834-6-135
Kont, R., Pihlajaniemi, V., Borisova, A. S., Aro, N., Marjamaa, K., Loogen, J., Büchs, J., Eijsink, V. G. H., Kruus, K., Väljamäe, P. 2019. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Biotechnology for Biofuels, 12, 235.
https://doi.org/10.1186/s13068-019-1578-5
Kont, R., Bissaro, B., Eijsink, V. G. H., Väljamäe, P. 2020. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nature Communications, 11(1), 5786.
https://doi.org/10.1038/s41467-020-19561-8
Kont, R., Pihlajaniemi, V., Niemelä, K., Kuusk, S., Marjamaa, K., Väljamäe, P. 2021. H2O2 in liquid fractions of hydrothermally pretreated biomasses: impli- cations of lytic polysaccharide monooxygenases. ACS Sustainable Chemistry & Engineering, 9(48), 16220−16231.
https://doi.org/10.1021/acssuschemeng.1c05491
Kurašin, M., Kuusk, S., Kuusk, P., Sørlie, M., Väljamäe, P. 2015. Slow off-rates and strong product binding are required for processivity and efficient degradation of recalcitrant chitin by family 18 chitinases. Journal of Biological Chemistry, 290(48), 29074−29085.
https://doi.org/10.1074/jbc.M115.684977
Kurašin, M., Väljamäe, P. 2011. Processivity of cellobiohydrolases is limited by the substrate. Journal of Biological Chemistry, 286(1), 169–177.
https://doi.org/10.1074/jbc.M110.161059
Kuusk, S., Väljamäe, P. 2021. Kinetics of H2O2-driven catalysis by a lytic poly- saccharide monooxygenase from the fungus Trichoderma reesei. Journal of Biological Chemistry, 297(5), 101256.
https://doi.org/10.1016/j.jbc.2021.101256
Kuusk, S., Sørlie, M., Väljamäe, P. 2015. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. Journal of Biological Chemistry, 290(18), 11678−11691.
https://doi.org/10.1074/jbc.M114.635631
Kuusk, S., Sørlie, M., Väljamäe, P. 2017. Human chitotriosidase is an endo-proces- sive enzyme. PLoS One, 12(1), e0171042.
https://doi.org/10.1371/journal.pone.0171042
Kuusk, S., Bissaro, B., Kuusk, P., Forsberg, Z., Eijsink, V. G. H., Sørlie, M., Väljamäe, P. 2018. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 293(2), 523−531.
https://doi.org/10.1074/jbc.M117.817593
Kuusk, S., Kont, R., Kuusk, P., Heering, A., Sørlie, M., Bissaro, B., Eijsink, V. G. H., Väljamäe, P. 2019. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 294(5), 1516−1528.
https://doi.org/10.1074/jbc.RA118.006196
Martin, C., Dixit, P., Momayez, F., Jönsson, L. J. 2022. Hydrothermal pretreatment of lignocellulosic feedstocks to facilitate biochemical conversion. Frontiers in Bioengineering and Biotechnology, 10, 846592.
https://doi.org/10.3389/fbioe.2022.846592
Payne, C. M., Knott, B. C., Mayes, H. B., Hansson, H., Himmel, M. E., Sandgren, M., Ståhlberg, J., Beckham, G. T. 2015. Fungal cellulases. Chemical Reviews, 115(3), 1308−1448.
https://doi.org/10.1021/cr500351c
Raud, E. 1984. Naksitrallid. Eesti Raamat.
Teugjas, H., Väljamäe, P. 2013. Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnology for Biofuels, 6(1), 104.
https://doi.org/10.1186/1754-6834-6-104
Vaaje-Kolstad, G., Horn, S. J., van Aalten, D. M. F., Synstad, B., Eijsink, V. G. H. 2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. Journal of Biological Chemistry, 280(31), 28492−28497.
https://doi.org/10.1074/jbc.M504468200
Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sørlie, M., Eijsink, V. G. H. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219–222.
https://doi.org/10.1126/science.1192231
Velleste, R., Teugjas, H., Väljamäe, P. 2010. Reducing end-specific fluo- rescence labeled celluloses for cellulase mode of action. Cellulose, 17, 125–138.
https://doi.org/10.1007/s10570-009-9356-3
Väljamäe, P. 2002. The Kinetics of Cellulose Enzymatic Hydrolysis: Implications of the Synergism Between Enzymes. Uppsala. (Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology; 781).
https://www.diva-portal.org/smash/get/diva2:162227/fulltext01.pdf