ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
The Leba Ridge–Riga–Pskov Fault Zone – a major East European Craton interior dislocation zone and its role in the early Palaeozoic development of the platform cover; pp. 161–189
PDF | https://doi.org/10.3176/earth.2019.12

Author
Igor Tuuling
Abstract

Analysis of data published on basement faulting in the Baltic region makes it possible to distinguish the >700 km long East European Craton (EEC) interior fault zone extending from the Leba Ridge in the southern Baltic Sea across the Latvian cities of Liepaja and Riga to Pskov in Russia (LeRPFZ). The complex geometry and pattern of its faults, with different styles and flower structures, suggests that the LeRPFZ includes a significant horizontal component. Exceptionally high fault amplitudes with signs of pulsative activities reveal that the LeRPFZ has been acting as an early Palaeozoic tectonic hinge-line, accommodating bulk of the far-field stresses and dividing thus the NW EEC interior into NW and SW halves. The LeRPFZ has been playing a vital role in the evolution of the Baltic Ordovician–Silurian Basin, as a deep-facies protrusion of this basin (Livonian Tongue) extending into the remote NW EEC interior adheres to this fault zone. The Avalonia–Baltica collision record suggests that transpression with high shear stress, forcing the SE blocks in the LeRPFZ to move obliquely to the NE, reigned in the Ordovician. In the Silurian, the LeRPFZ with surrounding areas became increasingly affected by Laurentia–Baltica interaction and compression from the NW, while the orogenic load by Avalonia–Baltica collision flexed the foreland basin along the NW margin of the EEC. As a highly mobile basement flaw liable to differentiated tectonic movements, the LeRPFZ has experienced tectonic inversion in accordance with the stress-field changes induced by Avalonia–Baltica–Laurentia interaction. Being an axial area of the Livonian Tongue in Ordovician–early Silurian time, by the Devonian, due to the progressing Caledonian Orogeny and growing compression from the NW, the LeRPFZ became the most uplifted and intensively eroded zone in the NW EEC interior.

References

Afanasev, B. & Volkolakov, F. 1972. The main tectonic structures of the pre-Devonian Baltic Syneclise sedi­mentary cover complex. In Regional Geology of the Baltic Countries and Belarus (Ulst, R., ed.), pp. 121–128. Zinatne, Riga [in Russian, with English summary].

Afanasev, B. L. & Volkolakov, F. K. 1981. Razvitie predstavlenij o genezise lokal¢nykh struktur Pribaltiki [Development on understanding the genesis of local tectonic structures in the Baltic countries]. In Usloviya obrazovaniya osadochnogo chekhla i struktur Pribaltiki [Conditions for Forming the Platform Cover and Tectonic Structures in the Baltic Countries] (Afanasev, B. L., ed.), pp. 19–24. Zinatne, Riga [in Russian].

Afanasev, B. L., Polivko, I. A., Yakovleva, V. I. & Volko­lakov, F. K. 1973. On the problem of genesis of the local structures of the Baltic area. In Issues in the Regional Geology of the Baltic Countries and Belorussia (Kuršs, V. M., ed.), pp. 201–210. Zinatne, Riga [in Russian, with English summary].

Ainsaar, L. 1995. Terrigeneous material and indications of sea-level changes in the Ordovician of South Estonia. In Liivimaa Geoloogia [Geology of Livonia] (Meidla, T., Jõeleht, A., Kalm, V. & Kirs, J., eds), pp. 51–58. Tartu [in Estonian, with English summary].

Alekseev, A. S., Kononova, L. I. & Nikishin, A. M. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): stratigraphy and sea-level changes. Tectonophysics, 268, 149–168.
https://doi.org/10.1016/S0040-1951(96)00229-6

All, T., Puura, V. & Vaher, R. 2004. Orogenic structures of the Precambrian basement of Estonia as revealed from the integrated modelling of the crust. Proceedings of the Estonian Academy of Sciences, Geology, 53, 165–189.

Alm, E., Sundblad, K. & Huma, H. 2005. Sm-Nd Isotope Determinations of Low-Temperature Fluorite-Calcite-Galena Mineralization in the Margins of the Fenno­scandian Shield. Report of Activities Carried out During 2004. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, 58 pp.

Amantov, A., Hagenfeldt, S. & Söderberg, P. 1995. The Meso­proterozoic to Lower Paleozoic sedimentary bedrock sequence in the northern Baltic Proper, Åland Sea, Gulf of Finland and Lake Ladoga. Proceedings of the Third Marine Geological Conference, “The Baltic” (Mojski, J. E., ed.), PracePanstwowego Instytutu Geologicznego, 149, 19–25.

Amantov, A., Laitakari, I. & Poroshin, Ye. 1996. Jotnian and Postjotnian; Sandstones and diabases in the surroundings of the Gulf of Finland. Geological Survey of Finland, Special Paper, 21, 99–113.

Ankudinov, S., Sadov, A. & Brio, H. 1994. Crustal structure of Baltic countries on the basis of deep seismic sounding data. Proceedings of the Estonian Academy of Sciences, Geology, 43, 129–136 [in Russian, with English summary].

Bassett, M. G., Kaljo, D. & Teller, L. 1989. The Baltic region. In A Global Standard for the Silurian System (Holland, C. H. & Bassett, M. G., eds), National Museum of Wales, Geological Series, 9, 158–170.

Bergerat, F., Angelier, J. & Andréasson, P.-G. 2007. Evolution of paleostress fields and brittle deformation of the Tornquist Zone in Scania (Sweden) during Permo-Mesozoic and Cenozoic times. Tectonophysics, 444, 93–110.
https://doi.org/10.1016/j.tecto.2007.08.005

Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N. & Volozh, Yu. A. 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160, 23–45.
https://doi.org/10.1016/j.precamres.2007.04.024

Brangulis, A. 1985. Vend i Kembrij Latvii [Vendian and Cambrian in Latvia]. Zinatne, Riga, 134 pp. [in Russian].

Brangulis, A. P. & Brio, H. S. 1981. Istoriya razvitiya osnovnykh lokal¢nykh podnyatij Zapadnoj i Tsentral¢noj Latvii [History of the development of the local uplifts in western and central Latvia]. In Usloviya obrazovaniya osadochnogo chekhla i struktur Pribaltiki [Conditions of the Formation of the Platform Cover and Its Structures in the Baltic Countries] (Afanasev, B. L., ed.), pp. 25–33. Zinatne, Riga [in Russian].

Brangulis, A. & Kanev, S. 2002. Latvijas tektonika [Tectonics of Latvia]. Valsts Geologijas Dienests, Riga, 50 pp. [in Latvian, with English summary].

Brio, H. & Bendrup, L. 1973. Some information on the crystalline basement topography and the structural plan of the sedimentary cover of the territory of the Latvian SSR. In Problem on Regional Geology of the Baltic Countries and Belarus (Kuršs, V., ed.), pp. 221–227. Zinatne, Riga [in Russian, with English summary].

Brio, H. S., Kucherenko, V. P. & Kursheva, V. F. 1981. Novye dannye o strukturnom plane kaledonskogo etazha v rajone Valmierskogo podnyatiya [New data on the structural setting of the Caledonian structural complex around the Valmiera Uplift]. In Usloviya obrazovaniya osadochnogo chekhla i struktur Pribaltiki [Conditions of the Formation of the Platform Cover and Its Structures in the Baltic Countries] (Afanasev, B. L., ed.), pp. 67–71. Zinatne, Riga [in Russian].

Christie-Blick, N. & Biddle, K. T. 1985. Deformation and basin formation along strike-slip faults. In Strike-Slip Deformation, Basin Formation, and Sedimentation (Biddle, K. T. & Christie-Blick, N., eds), Society for Sedimentary Geology (SEPM), Special Publication, 37, 1–34.
https://doi.org/10.2110/pec.85.37.0001

Clark, S. K. 1932. The mechanics of the Plains-type folds of the Mid-Continent area. Journal of Geology, 40, 46–51.
https://doi.org/10.1086/623917

Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth Science Reviews, 72, 39–66.
https://doi.org/10.1016/j.earscirev.2005.04.001

Cocks, L. R. M. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. Geological Society, London, Memoirs, 32, 83–95.
https://doi.org/10.1144/GSL.MEM.2006.032.01.05

Cunningham, W. D. & Mann, P. 2007. Tectonics of strike-slip restraining and releasing bends. In Tectonics of Strike-Slip Restraining and Releasing Bends (Cunningham, W. D. & Mann, P., eds), London Geological Society, Special Publications, 290, 1–12.
https://doi.org/10.1144/SP290.0

Domžalski, J., Górecki, W., Mazurek, A., Myoeko, A., Strzetelski, W. & Szamalek, K. 2004. The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data. Przegląd Geologiczny, 52, 792–799.

Einasto, R. 1995. On the role of the Livonian Tongue in the evolution of the Baltica continent. In Liivimaa Geoloogia [Geology of Livonia] (Meidla, T., Jõeleht, A., Kalm, V. & Kirs, J., eds), pp. 23–32. Tartu [in Estonian, with English summary].

Elminen, T., Airo, M.-L., Niemelä, R., Pajunen, M., Vaarma, M., Wasenius, P. & Wennerström, M. 2008. Fault structures in the Helsinki area, southern Finland. Geological Survey of Finland, Special Paper, 47, 185–213.

Flodén, T. 1975. Seismic refraction soundings in the area around Gotland, central Baltic. Stockholm Contributions in Geology, 28, 9–43.

Flodén, T. 1980. Seismic stratigraphy and bedrock geology of the Central Baltic. Stockholm Contributions in Geology, 35, 1–240.

Gaál, G. & Gorbatschev, R. 1987. An outline of the Pre­cambrian evolution of the Baltic Shield. Precambrian Research, 35, 15–52.
https://doi.org/10.1016/0301-9268(87)90044-1

Gee, D. G. & Pease, V. (eds). 2004. Timanides – Neoprotero­zoic Orogeny along the eastern margin of Baltica. Geological Society Memoirs, 30, 1–249.
https://doi.org/10.1144/GSL.MEM.2004.030.01.01

Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. 2008. From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 31, 44–51.
https://doi.org/10.18814/epiiugs/2008/v31i1/007

Gorbatschev, R. & Bogdanova, S. 1993. Frontiers in the Baltic Shield. Precambrian Research, 64, 3–22.
https://doi.org/10.1016/0301-9268(93)90066-B

Grad, M., Jensen, S. L., Keller, G. R., Guterch, A., Thybo, H., Janik, T., Tiira, T., Yliniemi, J., Luosto, U., Motuza, G., Nasedkin, V., Czuba, W., Gaczyński, E., Środa, P., Miller, K. C., Wilde-Piórko, M., Komminaho, K., Jacyna, J. & Korabliova, L. 2003. Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4. Journal of Geophysical Research, 108, (B11), 2541.
https://doi.org/10.1029/2003JB002426

Grahn, Y. 1982. Caradocian and Ashgillian Chitinozoa from the subsurface of Gotland. Sveriges Geologiska Under­sökning (SGU), C 788, 1–66.

Grahn, Y. 1995. Lower Silurian Chitinozoa and biostrati­graphy of subsurface Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 117, 57–65.
https://doi.org/10.1080/11035899509546199

Grahn, Y. & Nõlvak, J. 2010. Swedish Ordovician Chitinozoa and biostratigraphy: a review and new data. Palaeonto­graphica, Abteilung B: Palaeobotany – Palaeophytology, 283, 5–71.
https://doi.org/10.1127/palb/283/2010/5

Graversen, O. 2009. Structural analysis of superimposed fault systems of the Bornholm horst block, Tornquist Zone, Denmark. Bulletin of the Geological Society of Denmark, 57, 25–49.

Grigelis, A. (ed.). 1981. Geologiya Respublik Sovetskoj Pribaltiki [Geology of the Soviet Baltic Republics]. Explanatory note of the set geological maps, scale 1:500000, Nedra, Leningrad, 304 pp. [in Russian].

Guterch, A. & Grad, M. 2006. Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geological Quarterly, 50, 23–32.

Hagenfeldt, S. E. 1989. Lower and Middle Cambrian Acritarchs from the Baltic Depression and South-Central Sweden, Taxonomy, Stratigraphy, and Palaeogeographical Recon­struction. Ph.D thesis, Department of Geology, Stockhohn University, 32 pp.

Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11–34.
https://doi.org/10.1111/j.1502-3931.1973.tb00871.x

Jaanusson, V. 1976. Faunal dynamics in the Middle Ordo­vician (Viruan) of Balto-Scandia. In The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974 (Bassett, M. G., ed.), pp. 301–326. University of Wales Press and National Museum of Wales, Cardiff.

Janutyte, I., Majdanski, M., Voss, P. H. & Kozlovskaya, E. 2015. Upper mantle structure around the Trans-European Suture Zone obtained by teleseismic tomography. Solid Earth, 6, 73–91.
https://doi.org/10.5194/se-6-73-2015

Jensen, J. B., Moros, M., Endler, R. & IODP Expedition 347 Members. 2017. The Bornholm Basin, southern Scandinavia: a complex history from Late Cretaceous structural developments to recent sedimentation. Boreas, 46, 3–17.
https://doi.org/10.1111/bor.12194

Kajak, K. 1962. On the subsurface geology of south-east Estonia. Eesti NSV Teaduste Akadeemia Geoloogia Instituudi Uurimused, 10, 33–40 [in Russian, with English summary].

Kaljo, D. (ed.). 1970. The Silurian of Estonia. Valgus, Tallinn, 343 pp. [in Russian, with English summary].

Kaljo, 1971. The tectonic factor in the geological history of the East Baltic Basin during Silurian. Mémoires du Bureau de recherches géologiques et minières, 73, 275–279.

Kaljo, D. (ed.). 1977. Facies and Fauna of the Baltic Silurian. Academy of Sciences, Tallinn, 286 pp. [in Russian, with English summary].

Kaljo, D. & Jürgenson, E. 1977. Sedimentary facies of the East Baltic Silurian. In Facies and Fauna of the Baltic Silurian (Kaljo, D., ed.), pp. 122–148. Academy of Sciences, Tallinn [in Russian, with English abstract].

Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 138–155.
https://doi.org/10.1016/j.palaeo.2006.02.020

Kanev, S. & Peregudov, Y. 2000. A large carbonate buildup offshore Latvia. Latvija Geologija Viestis, 8, 10–14.

Kaplan, A. & Hasanovich, K. 1969. On the question of the history of tectonic development of the Lokno high. In Voprosy regional'noj geologii Pribaltiki i Belorussii [Questions on Regional Geology of the Baltic Countries and Belarus] (Volkolakov, F. K., ed.), pp. 101–113. Zinatne, Riga [in Russian, with English summary].

Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M. & Urtson, K. 2009. The crystalline basement of Estonia: rock complexes of the Palaeo­proterozoic Orosirian and Statherian and Mesoprotero­zoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences, 58, 219–228.
https://doi.org/10.3176/earth.2009.4.01

Krawczyk, C. M., Eilts, F., Lassen, A. & Thybo, H. 2002. Seismic evidence of Caledonian deformed crust and upper­most mantle structures in the northern part of the Trans-European Suture Zone, SW Baltic Sea. Tectonophysics, 360, 215–244.
https://doi.org/10.1016/S0040-1951(02)00355-4

Krzywiec, P. 2009. Devonian–Cretaceous repeated subsidence and uplift along the Teisseyre–Tornquist zone in SE Poland – Insight from seismic data interpretation. Tectono­physics, 475, 142–159.
https://doi.org/10.1016/j.tecto.2008.11.020

Laitakari, I., Rämö, T., Suominen, V., Niin, M., Stepanov, K. & Amantov, A. 1996. Subjotnian: Rapakivi granites and related rocks in the Gulf of Finland. Geological Survey of Finland, Special Paper, 21, 59–97.

Larsson, S. Å., Tullborg, E.-L., Cederbom, C. & Stiberg, J.-P. 1999. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermo­chronology. Terra Nova, 11, 210–215.
https://doi.org/10.1046/j.1365-3121.1999.00249.x

Lazauskiene, J., Stephenson, R., Šliaupa, S. & van Wees, J. D. 2002. 3-D flexural modelling of the Silurian Baltic Basin. Tectonophysics, 346, 115–135.
https://doi.org/10.1016/S0040-1951(01)00231-1

Lazauskiene, J., Sliaupa, S., Brazauskas, A. & Musteikis, P. 2003. Sequence stratigraphy of the Baltic Silurian succession: tectonic control on the foreland infill. In Tracing Tectonic Deformation Using the Sedimentary Record (McCann, T. & Saintot, A., eds), Geological Society, London, Special Publications, 208, 95–115.
https://doi.org/10.1144/GSL.SP.2003.208.01.05

Lidmar-Bergström, K., Olvmo, M. & Bonow, J. M. 2017. The South Swedish Dome: a key structure for identification of peneplains and conclusions on Phanerozoic tectonics of an ancient shield. GFF, 139, 244–259.

Männil, R. 1966. Evolution of the Baltic Basin During the Ordo­vician. Institute of Geology, Estonian Academy of Sciences, Tallinn, 200 pp. [in Russian, with English summary].

Marshak, S. & Paulsen, T. 1997. Structural style, regional distribution, and seismic implications of Midcontinent fault-and-fold zones, United States. Seismological Research Letters, 68, 511–520.
https://doi.org/10.1785/gssrl.68.4.511

Marshak, S., Nelson, W. J. & McBride, J. J. 2003. Phanero­zoic strike-slip faulting in the continental interior platform of the United States: examples from the Laramide Orogen, Midcontinent, and Ancestral Rocky Mountains. Geological Society Special Publications, 210, 159–184.
https://doi.org/10.1144/GSL.SP.2003.210.01.10

Martinsson, A. 1968. The Ordovician–Silurian hiatus below Gotland. Geologiska Föreningens i Stockholms Förhand­lingar, 90, 561–563.
https://doi.org/10.1080/11035896809454943

Mazur, S., Scheck-Wenderoth, M. & Krzywiec, P. 2005. Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 94, 782–798.
https://doi.org/10.1007/s00531-005-0016-z

Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V. & Lewandowski, M. 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34, 2465–2477.
https://doi.org/10.1002/2015TC003934

Mazur, S., Porębski, S. J., Kędzior, A., Paszkowski, M., Podhalańska, T. & Poprawa, P. 2018. Refined timing and kinematics for Baltica–Avalonia convergence based on the sedimentary record of a foreland basin. Terra Nova, 30, 8–16.
https://doi.org/10.1111/ter.12302

Mens, K. 1981. On the development of the Haanja-Mõniste high in the Vendian and Cambrian. In Settekivimid ja tektoonika [Sedimentary Rocks and Tectonics] (Pirrus, E., ed.), pp. 44–62. Valgus, Tallinn [in Estonian, with English summary].

Mens, K. & Pirrus, E. 1997. Vendian–Tremadock clastogenic sedimentary basins. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 184–192. Estonian Academy Publishers, Tallinn.

Merriam, D. 2012. Plains-type folds: their origin and develop­ment. The Compass: Earth Science Journal of Sigma Gamma Epsilon, 84, 8–12.

Mertanen, S., Airo, M.-L., Elminen, T., Niemelä, R., Pajunen, M., Wasenius, P. & Wennerström, M. 2008. Paleomagnetic evidence for Mesoproterozoic–Paleozoic reactivation of the Paleoproterozoic crust in southern Finland. Geological Survey of Finland, Special Paper, 47, 215–252.

Misans, J. P. & Brangulis, A. P. (eds). 1979. Geologicheskoe stroenie i poleznye iskopaemye Latvii [Geology and Mineral Resources of Latvia]. Zinatne, Riga, 538 pp. [in Russian].

Modliński, Z., Jacyna, J., Kanev, S., Khubldikov, A., Laskova, L., Laskovas, J., Lendzion, K., Mikazane, I. & Pomeranceva, R. 1999. Palaeotectonic evolution of the Baltic Syneclise during the early Palaeozoic as documented by palaeothickness maps. Geological Quarterly, 43, 285–296.

Motuza, G., Šliaupa, S. & Timmerman, M. J. 2015. Geo­chemistry and 40Ar/39Ar age of Early Carboniferous dolerite sills in the southern Baltic Sea. Estonian Journal of Earth Sciences, 64, 233–248.
https://doi.org/10.3176/earth.2015.30

Murell, G. R. 2003. The Long-Term Thermal Evolution of Central Fennoscandia, Revealed by Low-Temperature Thermochronometry. PhD thesis. Vrije Universiteit Amsterdam, 219 pp.

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentary basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–195. Estonian Academy Publishers, Tallinn.

Nielsen, A. T. & Schovsbo, N. H. 2011. The Lower Cambrian of Scandinavia: depositional environment, sequence strati­graphy and paleogeography. Earth Science Reviews, 107, 207–310.

Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Y. & Shalimov, I. V. 1996. Late Pre­cambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution: Tectonophysics, 268, 23–63.
https://doi.org/10.1016/S0040-1951(96)00228-4

Nironen, M. 1997. The Svecofennian Orogen: a tectonic model. Precambrian Research, 86, 21–44.
https://doi.org/10.1016/S0301-9268(97)00039-9

Nõlvak, J. 1987. Rakvere, Nabala, Vormsi and Pirgu stages. In Geologiya i poleznye iskopaemye Rakvereskogo Fosforitonosnogo rajona [Geology and Mineral Resources of the Rakvere Phosphorite-Bearing Area] (Puura, V., ed.), pp. 63–69. Valgus, Tallinn [in Russian, with English summary].

Paasikivi, L. B. 1966. Geologicheskoe stroenie i istoriya razvitiya Haanja-Loknovskogo i Mynisteskogo podnyatiya [Geology and development of the Haanja-Lokno and Mõniste uplifts]. Voprosy Razvedochnoj Geofiziki, 5, 86–97 [in Russian].

Paškevičius, J. 1997. The Geology of the Baltic Republics. Lietuvos Geologijos Tarnyba, Vilnius, 387 pp.

Pease, V., Daly, J. S., Elming, S.-Å., Kumpulainen, R., Moczydlowska, M., Puchkov, V., Roberts, D., Saintot, A. & Stephenson, R. 2008. Baltica in the Cryogenian, 850–630 Ma. Precambrian Research, 160, 46–65.
https://doi.org/10.1016/j.precamres.2007.04.015

Perens, E. 1995. Upper Ordovician sequence on the Põltsamaa–Jõgeva–Ruskavere line. In Liivimaa Geoloogia [Geology of Livonia] (Meidla, T., Jõeleht, A., Kalm, V. & Kirs, J., eds), pp. 45–50. Tartu [in Estonian, with English summary].

Pharaoh, T. C. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics, 314, 17–41.
https://doi.org/10.1016/S0040-1951(99)00235-8

Pharaoh, T. C., England, R. W., Verniers, J. & Zelainiewicz, A. 1997. Introduction: geological and geophysical studies in the Trans-European Suture Zone. Geological Magazine, 134, 585–590.
https://doi.org/10.1017/S0016756897007619

Pinet, N. 2016. Far-field effects of Appalachian orogenesis: a view from the craton. Geology, 44, 83–86.
https://doi.org/10.1130/G37356.1

Põldsaar, K. & Ainsaar, L. 2014. Extensive soft-sediment deformation structures in the early Darriwilian (Middle Ordovician) shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp, northwestern Estonia. Marine Geology, 356, 111–127.
https://doi.org/10.1016/j.margeo.2013.08.012

Põldsaar, K., Ainsaar, L., Nemliher, R., Tinn, O. & Stinkulis, G. 2019. A siliciclastic shallow-marine turbidite on the carbonate shelf of the Ordovician Baltoscandian palaeo­basin. Estonian Journal of Earth Sciences, 68, 1–14.
https://doi.org/10.3176/earth.2019.01

Polivko, I. A., 1981. Kaledonskaya struktura Pribaltiki [Caledonian structure of the Baltic countries]. In Usloviya obrazovaniya osadochnogo chekhla i struktur Pribaltiki [Conditions for Forming the Platform Cover and Tectonic Structures in the Baltic Countries] (Afanasev, B. L., ed.), pp. 34–45. Zinatne, Riga [in Russian].

Popovs, K., Saks, T. & Jātnieks, J. 2015. A comprehensive approach to the 3D geological modelling of sedimentary basins: example of Latvia, the central part of the Baltic Basin. Estonian Journal of Earth Sciences, 64, 173–188.
https://doi.org/10.3176/earth.2015.25

Poprawa, P., Sliaupa, S., Stephenson, R. & Lazauskiene, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219–239.
https://doi.org/10.1016/S0040-1951(99)00245-0

Preeden, U., Plado, J., Mertanen, S. & Puura, V. 2008. Multiply remagnetized Silurian carbonate sequence in Estonia. Estonian Journal of Earth Sciences, 57, 170–180.
https://doi.org/10.3176/earth.2008.3.05

Preeden, U., Mertanen, S., Elminen, T. & Plado, J. 2009. Secondary magnetizations in shear and fault zones in southern Finland. Tectonophysics, 479, 203−213.
https://doi.org/10.1016/j.tecto.2009.08.011

Puura, V. & Flodén, T. 1999. Rapakivi-granite–anorthosite magmatism – a way of thinning and stabilisation of the Svecofennian crust, Baltic Sea Basin. Tectonophysics, 305, 75–92.
https://doi.org/10.1016/S0040-1951(99)00019-0

Puura, V. & Suuroja, K. 1984. The structure of the Vihterpalu fault zone in north-western Estonia. Proceedings of the Academy of Sciences of the ESSR, Geology, 33, 33−35.

Puura, V. & Tuuling, I. 1988. Geology of the Early Ordovician clastic dikes of Osmussaar. Proceedings of the Academy of Sciences of the Estonian SSR, Geology, 37, 1–9 [in Russian, with English summary].

Puura, V. & Vaher, R. 1997. Cover structure. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 161–177. Estonian Academy Publishers, Tallinn.

Puura, V., Amantov, A., Sviridov, N. & Kanev, S. 1991. Tektonika (Tectonics). In Geologiya and geomorfologiya Baltijskogo morya [Geology and Geomorphology of the Baltic Sea] (Grigelis, A. A., ed.), pp. 267–290. Nedra, Leningrad [in Russian].

Puura, V., Amantov, A., Tikhomirov, V. & Laitakari, I. 1996. Latest events affecting the Precambrian basement, Gulf of Finland and surrounding areas. Geological Survey of Finland, Special Paper, 21, 115–125.

Sanarov, S. V. 1970. Stroenie kristallicheskogo fundamenta Kuibyshevskogo podnyatiya v svyazi s voprosamy formirovaniya struktur v osadochnom chekhle [Geology of the crystalline basement of the Kuibyshev Uplift in connection with the formation of the structures in the platform cover]. Sovetskaya Geologiya, 8, 127–131 [in Russian].

Shatskiy, N. S. 1967. Outlines of the tectonics of Volga-Urals petroleum region and adjacent parts of the west slope of the southern Urals. In Source Book in Geology 19001950 (Mather, K. F., ed.), pp. 257–267. Harvard University Press, Cambridge.

Skridlaite, G. & Motuza, G. 2001. Precambrian domains in Lithuania: evidence of terrane tectonics. Tectonophysics, 339, 113–133.
https://doi.org/10.1016/S0040-1951(01)00035-X

Sliaupa, S. & Baliukevicius, A. 2011. Evidences of recent fault activity in Lithuania from precise geodetic levelling data. In Selected Papers of the 8th International Conference on Environmental Engineering, May 1920, 2011, Vilnius, Lithuania (Cygas, D., ed.), pp. 1479–1981. VGTU Press “Technika”, Vilnius.

Šliaupa, S. & Hoth, P. 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In The Baltic Sea Basin (Harff, J., Björck, S. & Hoth, P., eds), pp. 13–53. Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-17220-5_2

Šliaupa, S., Fokin, P., Lazauskienė, J. & Stephenson, R. 2006. The Vendian–Early Palaeozoic sedimentary basins of the East European Craton. In European Lithosphere Dynamics (Gee, D. G. & Stephenson, R. A., eds), Geo­logical Society London, Memoirs, 32, 449–462.
https://doi.org/10.1144/GSL.MEM.2006.032.01.28

Šliaupiene, R. & Šliaupa, S. 2012. Risk factors of CO2 geological storage in the Baltic sedimentary basin. Geologija (Vilnius), 54, 100–123.
https://doi.org/10.6001/geologija.v54i3.2517

Söderberg, P. 1993. Seismic stratigraphy, tectonic and gas migration in the Åland Sea, northern Baltic Proper. Stockholm Contributions in Geology, 43, 1–67.

Sopher, D., Erlström, M., Bell, N. & Juhlin, C. 2016. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic basin: new insights from vintage 2D marine seismic data. Tectonophysics, 676, 90–111.
https://doi.org/10.1016/j.tecto.2016.03.012

Stripeika, A. 1999. Tectonic Evolution of the Baltic Syneclise and Local Structures in the South Baltic Region with Respect to Their Petroleum Potential. Lietuvos geologijos tarnyba, Vilnius, 112 pp.

Suveizdis, P., Brangulis, A., Puura, V., Brio, Ch. & Laškovas, E. 1979. Structure of a sedimentary cover. In Baltic Tectonics (Suveizdis, P., ed.), pp. 41–50. Mokslas, Vilnius [in Russian, with English summary].

Sylvester, A. G. 1988. Strike-slip faults. Bulletin of Geological Society of America, 100, 1666–1703.
https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2

Thybo, H. 2001. Crustal structure along the EGT profile across the Tornquist Fan interpreted from seismic, gravity and magnetic data. Tectonophysics, 334, 155–190.
https://doi.org/10.1016/S0040-1951(01)00055-5

Torsvik, T. H. & Cocks, L. R. M. 2013. New global palaeo-geographical reconstructions for the Early Palaeozoic and their generation. Geological Society of London, Memoirs, 38, 5–24.
https://doi.org/10.1144/M38.2

Torsvik, T. H. & Rehnström, E. F. 2003. The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics, 362, 67–82.
https://doi.org/10.1016/S0040-1951(02)00631-5

Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., Van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A. & Cocks, L. R. M. 2012. Phanero­zoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.
https://doi.org/10.1016/j.earscirev.2012.06.007

Tuuling, I. 2017. Paleozoic rocks structure versus Cenozoic cuesta relief along the Baltic Shield East European Platform transect. Geological Quartely, 61, 396–412.
https://doi.org/10.7306/gq.1342

Tuuling, I. & Flodén, T. 2000. Late Ordovician carbonate buildups and erosional features north-east of Gotland, northern Baltic Sea. GFF, 122, 237–249.
https://doi.org/10.1080/11035890001222237

Tuuling, I. & Flodén, T. 2001. Structure and relief of the bedrock sequence of the northern Baltic Proper. GFF, 123, 35–49.
https://doi.org/10.1080/11035890101231035

Tuuling, I. & Flodén, T. 2007. The Ordovician–Silurian boundary beds between Saaremaa and Gotland, Baltic Sea, based on high resolution seismic data. Geological Quarterly, 51, 217–229.

Tuuling, I. & Flodén, T. 2009a. The Llandovery–lowermost Wenlock sequence in the Baltic Sea between Saaremaa and Gotland; subdivision, thicknesses and correlation, based on marine seismic studies. Marine Geology, 267, 55–70.
https://doi.org/10.1016/j.margeo.2009.09.004

Tuuling, I. & Fodén, T. 2009b. Seismic correlation of Palaeozoic rocks across the northern Baltic Proper – Swedish–Estonian project since 1990, a review. Estonian Journal of Earth Sciences, 58, 73–85.
https://doi.org/10.3176/earth.2009.4.06

Tuuling, I. & Flodén, T. 2011. Seismic stratigraphy, architecture and outcrop pattern of the Wenlock–Přidoli sequence off­shore Saaremaa, Baltic Sea. Marine Geology, 281, 14–26.
https://doi.org/10.1016/j.margeo.2011.01.003

Tuuling, I. & Flodén, T. 2016. The Baltic Klint beneath the central Baltic Sea and its comparison with the North Estonian Klint. Geomorphology, 263, 1−18.
https://doi.org/10.1016/j.geomorph.2016.03.030

Tuuling, I. & Vaher, R. 2018. Structure and development of the Valmiera–Lokno Uplift – a highly elevated basement block with a strongly deformed and eroded platform cover in the East European Craton interior around the Estonian–Latvian–Russian borderland. Geological Quarterly, 62, 579–596.

Ulst, R. & Yakovleva, V. 1981. Paleostrukturnye osobennosti i litologo-fatsial¢naya zonal¢nost¢ ordovika Latvii [Paleo­structural charateristics and lithofacies zones in the Ordovician of Latvia]. In Usloviya obrazovaniya osadochnogo chekhla i struktur Pribaltiki [Conditions for Forming the Platform Cover and Tectonic Structures in the Baltic Countries] (Afanasev, B. L., ed.), pp. 109–120. Zinatne, Riga [in Russian].

Ulst, R., Gailite, L. & Yakovleva, V. 1982. Ordovik Latvii [The Ordovician of Latvia]. Zinatne, Riga, 294 pp. [in Russian].

Vaher, R., Kuuspalu, T., Puura, V. & Erisalu, E. 1964. Setting of sulphide ore occurrences in the Uljaste area. In Lithology of Palaeozoic Deposits in Estonia [Litologiya paleozojskikh otlozhenij Éstonii] (Baukov, S. S., ed.), pp. 33−53. Eesti NSV Teaduste Akadeemia Geoloogia Instituut, Tallinn [in Russian, with English summary].

Vaher, R. M., Raukas, A. V. & Tavast, E. H. 1980. The influence of tectonics and bedrock topography on the formation of insular heights at Estonia. Geomorfologiya, 3, 55–62 [in Russian, with English summary].

van der Pluijm, B. A. & Marshak, S. 2003. Earth Structure: An Introduction to Structural Geology and Tectonics. W. W. Norton & Company, New York – London, 656 pp.

van der Pluijm, B. A., Craddock, J. P., Graham, B. R. & Harris, J. H. 1997. Paleostress in cratonic North America: implication for deformation of continental interiors. Science, 277, 794–796.
https://doi.org/10.1126/science.277.5327.794

Vejelyte, I., Bogdanova, S., Salnikova, E., Yakovleva, S. & Fedoseenko, A. 2010. Timing of ductile shearing within the Drūkšiai–Polotsk Deformation Zone, Lithuania: a U–Pb titanite age. Estonian Journal of Earth Sciences, 59, 256–262.
https://doi.org/10.3176/earth.2010.4.02

Volkolakov, F. K. 1974. Strukturnaya pozitsiya podnyatiya Liepaja-more v Baltijskoj Sineklize [Structural setting of the submarine uplift off Liepaja in the Baltic Syneclise]. In Regional'naya geologiya Pribaltiki [Regional Geology of the Baltic countries] (Sorokin, V. S., ed.), pp. 145–148. Zinatne, Riga.

Wannäs, K. O. 1989. Seismic stratigraphy and tectonic development of the Upper Proterozoic to Lower Paleozoic of the Bothnian Bay, Baltic Sea. Stockholm Contributions in Geology, 40, 83–168.

Wennerström, M., Airo, M.-L., Elminen, T., Niemelä, R., Pajunen, M., Vaarma, M. & Wasenius, P. 2008. Orientation and properties of jointing in Helsinki area, southern Finland. Geological Survey of Finland. Special Paper, 47, 253–282.

Winterhalter, B., Flodén, T., Ignatius, H., Axberg, S. & Niemistö, L. 1981. Geology of the Baltic Sea. In Elsevier Oceanography Series, Vol. 30, Ch. 1 (Voipio, A., ed.). Elsevier Scientific Company, Amsterdam, 121 pp.
https://doi.org/10.1016/S0422-9894(08)70138-7

Winchester, J. A., Pharaoh, T. C. & Verniers, J. 2002. Palaeo­zoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. Geological Society, London, Special Publications, 201, 1–18.
https://doi.org/10.1144/GSL.SP.2002.201.01.01

Zdanaviciute, O. & Lazauskiene, J. 2004. Hydrocarbon migration and entrapment in the Baltic Syneclise. Organic Geo­chemistry, 35, 517–527.
https://doi.org/10.1016/j.orggeochem.2004.01.016

Zhuravlev, A. V., Sokiran, E. V., Evdokimova, I. O., Dorofeeva, L. A., Rusetskaya, G. A. & Małkowski, K. 2006. Faunal and facies changes at the Early–Middle Frasnian boundary in the north-western East European Platform. Acta Palaeontologica Polonica, 51, 747–758.

Back to Issue