ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Hirnantian Isotope Carbon Excursion in Gorny Altai, southwestern Siberia; pp. 225–232
PDF | doi: 10.3176/earth.2015.29

Authors
Nikolay V. Sennikov, Leho Ainsaar, Tõnu Meidla
Abstract

The Hirnantian Isotope Carbon Excursion (HICE), a glaciation-induced positive δ13C shift in the end-Ordovician successions, has been widely used in chemostratigraphic correlation of the Ordovician–Silurian boundary beds in many areas of the world. However, large regions with Ordovician sediments in Siberia are almost unstudied for stable isotope chemostratigraphy. The Burovlyanka section in the Altai area is one of the rare Hirnantian–Rhuddanian sections with both carbonates and graptolitiferous shales occurring in the succession. Here we report the discovery of the HICE in the uppermost beds of the Tekhten¢ Formation, the Dalmanitina Beds in the Burovlyanka section. The Dalmanitina limestone Member between the graptolitiferous shales may correspond to the mid-Hirnantian glacial episode, which led to a global sea level drop and major extinction of marine fauna.

References

Bergström, S. M., Saltzman, M. R. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine, 143, 657–678.
http://dx.doi.org/10.1017/S0016756806002469

Bergström, S. M., Lehnert, O., Calner, M. & Joachimski, M. M. 2012. A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy. GFF, 134, 39–63.
http://dx.doi.org/10.1080/11035897.2012.657231

Bergström, S. M., Eriksson, M. E., Young, S. A., Ahlberg, P. & Schmitz, B. 2014. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: a refined integration with the graptolite and conodont zone successions. GFF, 136, 355–386.
http://dx.doi.org/10.1080/11035897.2013.851734

Brenchley, P. J. 2004. End Ordovician glaciation. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 81–83. Columbia University Press, New York.

Budil, P. 1996. Representatives of genera Mucronaspis and Songxites (Trilobita) from the Bohemian Upper Ordovician. Journal of the Czech Geological Society, 41, 63–78.

Chen, X., Rong, J. Y., Fan, J. X., Zhan, R. B., Mitchell, C. E., Harper, D. A. T., Melchin, M. J., Peng, P., Finney, S. C. & Wang, X. F. 2006. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29, 183–196.

Dobretsov, N. L. 2003. Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian Fold Belt (Paleo-Asian ocean). Geologiya i Geofizika [Russian Geology and Geophysics], 44, 5–27.

Fan, J., Peng, P. & Melchin, M. J. 2009. Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeography, Palaeo­climatology, Palaeoecology, 276, 160–169.
http://dx.doi.org/10.1016/j.palaeo.2009.03.007

Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobson, S. R., Soufiane, A., Achab, A. & Noble, P. J. 1999. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology, 27, 215–218.
http://dx.doi.org/10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2

Gorjan, P., Kaiho, K., Fike, D. A. & Xu, C. 2012. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: global correlation and environmental event interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 14–22.
http://dx.doi.org/10.1016/j.palaeo.2012.03.021

Hints, L., Pärnaste, H. & Gailite, L. I. 2012. Hirnantia sagittifera (Brachiopoda) and Mucronaspis mucronata s.l. (Trilobita) in the Upper Ordovician of the East Baltic: taxonomy and distribution. Estonian Journal of Earth Sciences, 61, 65–81.
http://dx.doi.org/10.3176/earth.2012.2.01

Kaljo, D. & Martma, T. 2011. Carbon isotope trend in the Mirny Creek area, NE Russia, its specific features and possible implications of the uppermost Ordovician stratigraphy. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), Cuadernos del Museo Geominero, 14, 267–273.

Kaljo, D., Hints, L., Männik, P. & Nõlvak, J. 2008. The succession of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes. Estonian Journal of Earth Sciences, 57, 197–218.
http://dx.doi.org/10.3176/earth.2008.4.01

Kaljo, D., Männik, P., Martma, T. & Nõlvak, J. 2012. More about the Ordovician–Silurian transition beds at Mirny Creek, Omulev Mountains, NE Russia: carbon isotopes and conodonts. Estonian Journal of Earth Sciences, 61, 277–294.
http://dx.doi.org/10.3176/earth.2012.4.07

Kanygin, A. V., Koren, T. N., Yadrenkina, A. G., Timokhin, A. V., Sychev, O. V. & Tolmacheva, T. Y. 2010. Ordovician of the Siberian Platform. Geological Society of America Special Paper, 466, 105–117.
http://dx.doi.org/10.1130/2010.2466(07)

Koren¢, T. N. & Sobolevskaya, R. F. 2008. The regional stratotype section and point for the base of the Hirnantian Stage (the uppermost Ordovician) at Mirny Creek, Omulev Mountains, Northeast Russia. Estonian Journal of Earth Sciences, 57, 1–10.

Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S. & Sheehan, P. M. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeo­climatology, Palaeoecology, 152, 173–187.
http://dx.doi.org/10.1016/S0031-0182(99)00046-2

LaPorte, D. F., Holmden, C., Patterson, W. P., Loxton, J. D., Melchin, M. J., Mitchell, C. E., Finney, S. C. & Sheets, H. D. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 182–195.
http://dx.doi.org/10.1016/j.palaeo.2009.03.009

Marshall, J. D., Brenchley, P. J., Mason, P., Wolff, G. A., Astini, R. A., Hints, L. & Meidla, T. 1997. Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 195–210.
http://dx.doi.org/10.1016/S0031-0182(97)00063-1

Sennikov, N. V. & Ainsaar, L. 2012. The first data on the carbon isotopes of the Hirnantian Stage in Gorny Altai. In Paleozoj Rossii: regional ¢naya stratigrafiya, pale­ontologiya, geo- i biosobytiya [Paleozoic of Russia: Regional Stratigraphy, Paleontology, Geo- and Bioevents, Contributions of III Russian Conference, September 2012, St. Petersburg] (Zhamoida, A. I., ed.), pp. 205–207. VSEGEI, St. Petersburg [in Russian].

Sennikov, N. V., Yolkin, E. A., Petrunina, Z. E., Gladkikh, L. A., Obut, O. T., Izokh, N. G. & Kipriyanova, T. P. 2008. Ordovician–Silurian Biostratigraphy and Paleo­geography of the Gorny Altai. Publishing House of SB RAS, Novosibirsk, 154 pp.

Sennikov, N. V., Obut, O. T., Bukolova, E. V. & Tolmacheva, T. Y. 2011. The depths of the Early Paleozoic sedi­mentary basins of the Paleoasian Ocean: lithofacies and bioindicator estimates. Russian Geology and Geophysics, 52, 1171–1194.
http://dx.doi.org/10.1016/j.rgg.2011.09.010

Sennikov, N. V., Lykova, E. V., Obut, O. T., Tolmacheva, T. Y. & Izokh, N. G. 2014. The new Ordovician stage standard as applied to the stratigraphic units of the western Altai–Sayan Folded Area. Russian Geology and Geophysics, 55, 971–988.
http://dx.doi.org/10.1016/j.rgg.2014.07.005

Underwood, C. J., Crowley, S. F., Marshall, J. D. & Brenchley, P. J. 1997. High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob’s Linn, Scotland) and its global correlation. Journal of the Geological Society, 154, 709–718.
http://dx.doi.org/10.1144/gsjgs.154.4.0709

Back to Issue