ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Geochemistry and 40Ar/ 39 Ar age of Early Carboniferous dolerite sills in the southern Baltic Sea; pp. 233–248
PDF | doi: 10.3176/earth.2015.30

Authors
Gediminas Motuza, Saulius Šliaupa, Martin J. Timmerman
Abstract

The Early Carboniferous magmatic event in the southern Baltic Sea is manifested by dolerite intrusions. The presumable area in which the dolerite intrusions occur ranges from 30 to 60 km in east–west direction, and is about 100 km in north–south direction. The dolerites were sampled in well D1-1 and investigated by applying chemical analysis and 40Ar/39Ar step-heating dating. Dolerites are classified as alkali and sodic, characterized by high TiO2 (3.92, 3.99 wt%) and P2O5 (1.67, 1.77 wt%) and low MgO (4.89, 4.91 wt%) concentrations, enriched in light rare earth elements, originated from an enriched mantle magma source and emplaced in a continental rift tectonic setting. The 351 ± 11 Ma 40Ar/39Ar plateau age for groundmass plagioclase indicates a considerable age gap with the 310–250 Ma magmatism in southern Scandinavia and northern Germany. The magmatic rocks in the Baltic Sedimentary Basin are coeval with alkaline intrusions of NE Poland. Both magmatic provinces lie in the northwestward prolongation of the Pripyat–Dnieper–Donetsk Rift (370–359 Ma) and may constitute a later phase of magmatic activity of this propagating rift system.

References

Aizberg, R. Y., Beskopylny, V. N., Starchik, T. A. & Tsekoyeva, T. K. 2001. Late Devonian magmatism in the Pripyat Palaeorift: a geodynamic model. Geological Quarterly, 45, 349–358.

Alexander, E. C. Jr., Mickelson, G. M. & Lanphere, M. A. 1978. MMHb-1: a new 40Ar–39Ar dating standard. USGS Open File Report, 78-701, 6–8.

Armbrustmacher, T. J. & Modreski, P. T. 1994. Petrology and mineralogy of alkaline rocks from the Elk massif, north­eastern Poland. USGS Open-File Report, 94-145, 92.

Breitkreuz, C. & Kennedy, A. 1999. Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics, 266, 379–404.
http://dx.doi.org/10.1016/s0040-1951(98)00293-5

Cabanis, B. & Lecolle, M. 1989. Le diagramme La/10–Y/15–Nb/8 un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contaminacion crustale. Comptes Rendus de l’Académie des Sciences, Série II, 309, 2023–2029.

Corfield, S. M., Gawthorpe, R. L., Gage, M., Fraser, A. J. & Besly, B. M. 1996. Inversion tectonics of the Variscan foreland of the British Isles. Journal of the Geological Society, London, 153, 17–32.
http://dx.doi.org/10.1144/gsjgs.153.1.0017

Coward, M. P. 1993. The effect of Late Caledonian and Variscan continental escape tectonics on basement structure, Paleozoic basin kinematics and subsequent Mesozoic basin development in NW Europe. In Petroleum Geology of Northwest Europe, Proceedings of the 4th Conference (Parker, J. R., ed.), The Geological Society, London, Petroleum Geology Conference Series, 4, 1095–1108.

Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I. S., Stein, H., Brassinnes, S., Ohnenstetter, D. & Deloule, E. A. 2013. Hidden alkaline and carbonatite province of Early Carboniferous age in northeast Poland: zircon U–Pb and pyrrhotite Re–Os geochronology. The Journal of Geology, 121, 91–104.
http://dx.doi.org/10.1086/668674

Dziedzic, A. & Ryka, W. 1983. Carbonatites in the Tajno intrusion (NE Poland). Archiwum Mineralogiczne, 38, 4–34.

Engels, J. C. & Ingamells, C. O. 1971. Information Sheets 1 and 2, LP-6 Biotite 40–60 mesh. U.S.G.S. Menlo Park, California, U.S.A.

Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. & Taylor, R. N. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153, 197–208.
http://dx.doi.org/10.1016/S0012-821X(97)00170-2

Garetskij, R. G., Aizberg, R. E. & Starchik, T. A. 2004. Pripyatskij trog: tektonika, geodinamika i evolyutsiya [Pripyat Trough: tectonics, geodynamics, and evolution]. Russian Journal of Earth Sciences, 6, 3 [in Russian].

Gregersen, S., Wiejacz, P., Dębski, W., Domanski, B., Assinovskaya, B. A., Guterch, B., Mäntyniemi, P., Nikulin, V. G., Pacesa, A., Puura, V., Aronov, A. G., Aronova, T. I., Grünthal, G., Husebye, E. S. & Sliaupa, S. 2007. The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164, 1–2, 63–74.
http://dx.doi.org/10.1016/j.pepi.2007.06.005

Heeremans, M., Faleide, J. I. & Larsen, B. T. 2004. Late Carboniferous–Permian of NW Europe: an intro­duction to a new regional map. In Permo-Carboniferous Magmatism and Rifting in Europe (Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T., eds), Geological Society, London, Special Publications, 223, 75–88.
http://dx.doi.org/10.1144/gsl.sp.2004.223.01.04

Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33–45.
http://dx.doi.org/10.1016/0012-821X(86)90038-5

Kalt, A., Corfu, F. & Wijbrans, J. 2000. Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contributions to Mineralogy and Petrology, 138, 143–163.
http://dx.doi.org/10.1007/s004100050014

Kharin, G. S. & Eroshenko, D. V. 2014. Basic intrusives and hydrocarbonic potential of the South-East Baltic. Oceanology, 54, 245–258.
http://dx.doi.org/10.7868/S0030157414020117

Koppers, A. A. P. 2002. ArArCALC – Software for 40Ar/39Ar age calculations. Computers & Geosciences, 28, 605–619.
http://dx.doi.org/10.1016/S0098-3004(01)00095-4

Korzun, V. P. & Makhnach, A. S. 1977. Verkhnedevonskaya shchelochnaya vulkanogennaya formatsiya Pripyatskoj vpadiny [Upper Devonian Alkaline Volcanogenic Formation of the Pripiat Trough]. Nauka i tekhnika, Minsk, 160 pp. [in Russian].

Kruchek, S. A. & Obukhovskaya, T. G. 1997. Detal¢naya stratigrafiya devonskikh otlozhenij Zhlobinskoj sedloviny i sopredel¢nykh regionov v kontekste poiskov mineral¢nykh resursov [Detailed stratigraphy of Devonian deposits of the Zhlobin Saddle and adjoining regions in the context of searching for mineral resources]. In Mineral¢no-syrevaya baza Respubliki Belarus: sostoyanie i perspektivy [Mineral Resources of the Republic of Belarus: State of the Art and Outlooks], pp. 19–21. BelNIGRI, Minsk [in Russian].

Krystkiewicz, E. & Krzemiński, L. 1992. Petrology of the alkaline ultrabasic Tajno complex. Prace Panstwowego Instytutu Geologicznego, 139, 19–35.

Krzemińska, E. & Krzemiński, L. 2012. The Mlawa syenite alkaline intrusion – A perspective of rare earth elements occurrence. Buletyn Panstwowego Institutu Geologicznego, 448, 401–408.

Krzemińska, E., Wiszniewska, J. & Williams, I. S. 2006. Early Carboniferous age of the cratonic intrusions in the crystalline basement of NE Poland. Przegląd Geologiczny, 54, 1093–1098.

Kusznir, N. J., Kovkhuto, A. & Stephenson, R. A. 1996. Syn-rift evolution of the Pripyat Trough: constraints from structural and stratigraphic modelling. Tectonophysics, 268, 221–236.
http://dx.doi.org/10.1016/S0040-1951(96)00231-4

Leeder, M. 1982. Upper Palaeozoic basins of the British Isles – Caledonide inheritance versus Hercynian plate margin processes. Journal of the Geological Society of London, 139, 479–491.
http://dx.doi.org/10.1144/gsjgs.139.4.0479

Ludwig, K. R. 1998. Using Isoplot/Excel Version 1.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1, 44 pp.

Maynard, J. R., Hofmann, W., Dunay, R. E., Bentham, P. N., Dean, K. P. & Watson, I. 1997. The Carboniferous of Western Europe: the development of a petroleum system. Petroleum Geoscience, 3, 97–115.
http://dx.doi.org/10.1144/petgeo.3.2.97

McDonough, W. F., Sun, S. S., Ringwood, A. E., Jagoutz, E. & Hofmann, A. W. 1992. K, Rb and Cs in the Earth and Moon and the evolution of the Earth’s mantle. Geochimica et Cosmochimica Acta, 56, 1001–1012.
http://dx.doi.org/10.1016/0016-7037(92)90043-I

Meschede, M. 1986. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb–Zr–Y diagram. Chemical Geology, 56, 207–218.
http://dx.doi.org/10.1016/0009-2541(86)90004-5

Mikhailov, N. D., Laptsevich, A. G. & Vladykin, N. V. 2010. Izotopnyj sostav Sr i Nd v verkhnedevonskikh magma­ticheskikh porodakh Belorusi [Sr and Nd isotopic composition of the Upper Devonian igneous rocks of Belarus]. Doklady Natsional¢noj Akademii Nauk Belarusi, 54, 6, 100–104.

Motuza, G., Kepežinskas, P. & Šliaupa, S. 1994. Diabases from drillhole D-1 in the Baltic Sea. Geologija (Vilnius), 16, 16–20.

Narkiewicz, M. 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51, 231–256.

Narkiewicz, K. & Narkiewicz, M. 2008. The mid-Frasnian subsidence pulse in the Lublin Basin (SE Poland): sedimentary record, conodont biostratigraphy and regional significance. Acta Geologica Polonica, 58, 287–301.

Neumann, E.-R., Wilson, M., Heeremans, M., Spencer, E. A., Obst, K., Timmerman, M. J. & Kirstein, L. 2004. Carboniferous–Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. In Permo-Carboniferous Rifting and Magmatism in Europe (Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T., eds), Geological Society of London, Special Publications, 223, 11–40.
http://dx.doi.org/10.1144/gsl.sp.2004.223.01.02

Pearce, J. A. 1983. The role of subcontinental lithosphere in magma genesis at destructive plate margins. In Continental Basalts and Mantle Xenoliths (Hawksworth, C. J. & Norry, M. J., eds), pp. 230–249. Nantwich, Shiva.

Pearce, J. A. 1996. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks; Applications for Massive Sulphide Exploration (Bailes, A. H., Christiansen, E. H., Galley, A. G., Jenner, G. A., Keith, J. D., Kerrich, R., Lentz, D. R., Lesher, C. M., Lucas, S. B., Ludden, J. N. et al., eds), Geological Association of Canada, Short Course Notes, 12, 79–113.

Petrova, N. S., Shablovskaya, R. K. & Krasnik, Z. M. 1983. O khimiko-mineralogicheskom sostave tufogennykh glinistykh prosloev nadsolevykh i solenosnykh otlozhenij Pripyatskogo progiba [Chemical and mineralogical composition of tufogenic argillaceous layers of evaporitic and covering deposits of the Pripyat Trough]. Doklady Natsional¢noj Akademii Nauk Belarusi, 27, 835–837 [in Russian].

Poprawa, P., Šliaupa, S. & Sidorov, V. 2006. Późnosylursko–wczesnodewońska śródpłytowa kompresja na przedpolu orogenu kaledońskiego (centralna część basenu bałtyckiego) – analiza danych sejsmicznych [Late Silurian–Early Devonian intra-plate compression in the foreland of the Caledonian orogen (central part of the Baltic Basin) – analysis of seismic data]. Prace Państwowego Instytutu Geologicznego, 186, 215–224 [in Polish].

Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & DePaolo, D. J. 1997. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145, 117–152. See also Corrigendum in Chemical Geology, 149, p. 259.
http://dx.doi.org/10.1016/S0009-2541(98)00047-3

Rex, D. C. & Guise, P. G. 1986. Age of the Tinto felsite, Lanarkshire: a possible 39Ar-40Ar monitor. Bulletin of Liaison and Information, IGCP Project 196, 6.

Rex, D. C., Guise, P. G. & Wartho, J.-A. 1993. Disturbed 40Ar-39Ar spectra from hornblendes: thermal loss or contamination? Chemical Geology (Isotope Geoscience Section), 103, 271–281.
http://dx.doi.org/10.1016/0009-2541(93)90306-4

Roddick, J. C. 1983. High precision intercalibration of 40Ar-39Ar standards. Geochimica et Cosmochimica Acta, 47, 887–898.
http://dx.doi.org/10.1016/0016-7037(83)90154-0

Ryka, W. 1992. Geology of the Tajno massif carbonatites. Prace Panstwowego Instytutu Geologicznego, CXXXIX, 43–77.

Ryka, W., Armbrustmacher, T. J. & Modreski, P. J. 1992. Geochemistry and petrology of the alkaline rocks of the Tajno complex (Preliminary report). Prace Panstwowego Instytutu Geologicznego, CXXXIX, 37–41.

Šliaupa, S. & Hoth, P. 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In The Baltic Sea Basin (Harff, J., Björck, S. & Hoth, P., eds), pp. 13–51. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-17220-5_2

Sliaupa, S., Motuza, G., Timermann, M. & Korabliova, L. 2002. Age and distribution of the diabase intrusions of the Baltic Sea. In 7th Marine Geological Conference “Baltic-7” Abstracts, Kaliningrad, p. 122.

Šliaupa, S., Poprawa, P. & Jacyna, J. 2000. Structural analysis of seismic data in the Baltic Basin: evidences for Silurian–Early Devonian intra-plate compression in the foreland of Caledonian orogen. Journal of Czech Geological Society, 45, 260–261.

Šliaupa, S., Laskova, L., Lazauskiene, J., Laskovas, J. & Sidorov, V. 2004. The petroleum system of the Lithuanian offshore region. Zeitschrift für Angewandte Geologie, 2, 41–62.

Steiger, R. H. & Jäger, E. 1977. Subcommission on geo­chronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.
http://dx.doi.org/10.1016/0012-821X(77)90060-7

Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In Magmatism in the Ocean Basins (Saunders, A. D. & Norry, M. J., eds), Geological Society, London, Special Publications, 42, 313–345.
http://dx.doi.org/10.1144/gsl.sp.1989.042.01.19

Timmerman, M. J. 2004. Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. In Permo-Carboniferous Magmatism and Rifting in Europe (Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T., eds), Geological Society, London, Special Publications, 223, 41–74.
http://dx.doi.org/10.1144/gsl.sp.2004.223.01.03

Timmerman, M. J., Heeremans, M., Kirstein, L. A., Larsen, B. T., Spencer-Dunworth, E. A. & Sundvoll, B. 2009. Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian. Tectonophysics, 473, 375–390.
http://dx.doi.org/10.1016/j.tecto.2009.03.011

Turner, G., Huneke, J. C., Podosek, F. A. & Wasserburg, G. J. 1971. 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth and Planetary Science Letters, 12, 19–35.
http://dx.doi.org/10.1016/0012-821X(71)90051-3

Vejelyte, I., Yi, K., Cho, M., Kim, N. & Lee, T. 2011. Intracratonic carboniferous granites in the Paleo­protero­zoic crust of Lithuania: new SHRIMP U-Pb zircon ages. In Goldschmidt Conference Abstracts, p. 2079.

Veretennikov, N. V., Korzun, V. P., Korneichik, A. V., Mikhailov, N. D., Laptsevich, A. G. & Shkuratov, B. I. 1997. Diatremy Belarusi (petrologicheskaya spetsializatsiya, almazonosnost¢) [Belorussian diatremes (petrological speciali­­zation, diamond potential)]. In Mineral¢no-syrevaya baza Respubliki Belarus: sostoyanie i perspektivy [Mineral Resources of the Republic of Belarus: State of the Art and Outlooks], pp. 101–102. BelNIGRI, Minsk [in Russian].

Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P. & Scheveers, R. 1995. Argon geochronology of small samples using the Vulkaan argon laserprobe. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 98, 185–218.

Wilson, M. & Lyashkevich, Z. M. 1996. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets Rift, East European Platform. Tectonophysics, 268, 65–81.
http://dx.doi.org/10.1016/S0040-1951(96)00234-X

Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimi­nation of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.
http://dx.doi.org/10.1016/0009-2541(77)90057-2

Wood, D. A. 1980. The application of Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50, 11–30.
http://dx.doi.org/10.1016/0012-821X(80)90116-8

 

Back to Issue