ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences; pp. 159–172
PDF | 10.3176/earth.2015.24

Authors
Mats Meriste, Kalle Kirsimäe
Abstract

We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

 

References

Ailstock, M. S., Norman, C. M. & Bushman, P. J. 2001. Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlands. Restoration Ecology, 9, 49–59.

http://dx.doi.org/10.1046/j.1526-100x.2001.009001049.x

Armstrong, J., Armstrong, W. & van der Putten, W. H. 1996. Phragmites die-back: bud and root death blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist, 133, 399–414.
http://dx.doi.org/10.1111/j.1469-8137.1996.tb01907.x

Astover, A., Roostalu, H., Lauringson, E., Lemetti, I., Selge, A., Talgre, L., Vasiliev, N., Mõtte, M., Tõrra, T. & Penu, P. 2006. Changes in agricultural land use and in plant nutrient balances of arable soils in Estonia. Archives of Agronomy and Soil Science, 52, 247–231.
http://dx.doi.org/10.1080/03650340600638883

Bart, D. & Hartman, J. 2002. Constraints on the establishment of Phragmites australis in a New Jersey salt marsh. Wetlands, 22, 201–213.
http://dx.doi.org/10.1672/0277-5212(2002)022[0201:ECOEEO]2.0.CO;2

Brix, H. 1999. The European Research Project on Reed Die-back and Progression (EUREED). Limnologica, 29, 5–10.
http://dx.doi.org/10.1016/S0075-9511(99)80033-4

Burdick, D. M., Buchsbaum, R. & Holt, E. 2001. Variation in soil salinity associated with expansion of Phragmites australis in salt marshes. Environmental and Experimental Botany, 46, 247–261.
http://dx.doi.org/10.1016/S0098-8472(01)00099-5

Chambers, R., Osgood, M., Bart, D. & Montalto, F. 2003. Phragmites australis invasion and expansion in tidal wetlands: interactions among salinity sulfide and hydrology. Estuaries, 26, 398–406.
http://dx.doi.org/10.1007/BF02823716

Church, J. A. & White, N. J. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32, 585–602.
http://dx.doi.org/10.1007/s10712-011-9119-1

Čížková, J., Strand, A. & Lukavská, J. 1996. Factors associated with reed decline in a eutrophic fishpond Rožmberk (South Bohemia Czech Republic). Folia Geobotanica Phytotaxonomica, 31, 73–84.
http://dx.doi.org/10.1007/BF02803996

Clevering, O. A. 1998. Effects of litter accumulation and water table on morphology and productivity of Phragmites australis. Wetlands Ecology and Management, 5, 275–287.
http://dx.doi.org/10.1023/A:1008233912279

Clevering, O. A. & van der Toorn, J. 2000. Observations on the colonization of a young polder area in the Netherlands with special reference to the clonal expansion of Phragmites australis. Folia Geobotanica, 35, 375–387.
http://dx.doi.org/10.1007/BF02803550

Coops, H., Geilen, N. & van der Velde, G. 1994. Distribution and growth of the helophyte species Phragmites australis and Scirpus lacustris in water depth gradients in relation to wave exposure. Aquatic Botany, 48, 273–284.
http://dx.doi.org/10.1016/0304-3770(94)90020-5

Coops, H., van den Brink, F. W. B. & van der Velde, G. 1996. Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany, 54, 11–24.
http://dx.doi.org/10.1016/0304-3770(96)01025-X

Deegan, B. M., White, S. D. & Ganf, G. G. 2007. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquatic Botany, 86, 309–315.
http://dx.doi.org/10.1016/j.aquabot.2006.11.006

Eipre, T. & Pärn, H. 1982. Matsalu Riikliku Looduskaitseala ja selle ümbruse kliima ning veerežiim [The climate and hydrologic regime of the Matsalu Nature Reserve and surrounding areas]. Eesti NSV riiklike looduskaitsealade teaduslikud tööd, 3, 4–42 [in Estonian].

Gigante, D., Venanzioni, R. & Zuccarello, V. 2011. Reed die-back in southern Europe? A case study from Central Italy. Comptes Rendus Biologies, 334, 327–336.
http://dx.doi.org/10.1016/j.crvi.2011.02.004

Härms, M. 1926. Matsalu lahe ja selle ümbruse linnustikust [Birds in Matsalu Bay and its surroundings]. Loodus­uurijate Seltsi aruanded, 32, 55–78 [in Estonian].

Hocking, P. J. 1989. Seasonal dynamics of production and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Australian Journal of Marine and Freshwater Research, 40, 445–464.
http://dx.doi.org/10.1071/MF9890445

Iital, A., Stålnacke, P., Deelstra, J., Loigu, E. & Pihlak, M. 2005. Effects of large-scale changes in emissions on nutrient concentrations in Estonian rivers in the Lake Peipsi drainage basin. Journal of Hydrology, 304, 261–273.
http://dx.doi.org/10.1016/j.jhydrol.2004.07.034

Iital, A., Pachel, K., Loigu, E., Pihlak, M. & Leisk, Ü. 2010. Recent trends in nutrient concentrations in Estonian rivers as a response to large-scale changes in land-use intensity and life-styles. Journal of Environmental Monitoring, 12, 178–188.
http://dx.doi.org/10.1039/B912923E

Jaagus, J. & Suursaar, Ü. 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Estonian Journal of Earth Sciences, 62, 73–92.
http://dx.doi.org/10.3176/earth.2013.07

Järvekülg, A. 2001. Eesti jõed [Estonian Rivers]. Tartu Ülikooli Kirjastus, Tartu, 750 pp. [in Estonian, with English summary].

Johannsson, M. M., Kahma, K. K. & Boman, H. 2003. An improved estimate for the long-term mean sea level on the Finnish Coast. Geophysica, 39, 51–73.

Johansson, M. M., Kahma, K. K., Boman, H. & Launiainen, J. 2004. Scenarios for sea level on the Finnish coast. Boreal Environment Research, 9, 153–166.

Keller, B. E. M. 2000. Plant diversity in Lythrum, Phragmites, and Typha marshes, Massachusetts, U.S.A. Wetlands Ecology and Management, 8, 391–401.
http://dx.doi.org/10.1023/A:1026505817409

Kont, A., Jaagus, J. & Aunap, R. 2003. Climate change scenarios and the effect of sea-level rise for Estonia. Global and Planetary Change, 36, 1–15.
http://dx.doi.org/10.1016/S0921-8181(02)00149-2

Kont, A., Jaagus, J., Aunap, R., Ratas, U. & Rivis, R. 2008. Implications of sea-level rise for Estonia. Journal of Coastal Research, 24, 423–431.
http://dx.doi.org/10.2112/07A-0015.1

Ksenofontova, T. 1989. General changes in the Matsalu bay reed beds in this century and their present quality. Aquatic Botany, 35, 111–120.
http://dx.doi.org/10.1016/0304-3770(89)90071-5

Kumari, E. 1973. Matsalu maastike looduslike komplekside kujunemisest viimase 100 aasta vältel [Development of landscape and natural systems in Matsalu in last 100 years]. In Matsalu maastik ja linnud [Landscape and Birds in the Matsalu Area] (Renno, O., ed.), pp. 28–40. Valgus, Tallinn [in Estonian].

Kupffer, K. R. 1911. Baltische Landeskunde. Riga.

Lutt, J. 1980. Some data on the bottom deposits in the Väinameri according to grain size analysis. Proceedings of the Estonian Academy of Sciences, Geology, 29, 73–83 [in Russian, with English summary].

Lutt, J. 1985. Donnye osadki Vyajnameri [Bottom Sediments of Väinameri]. Valgus, Tallinn, 239 pp. [in Russian].

Lutt, J. & Kask, J. 1978. Matsalu lahe põhjasetted [Bottom sediments of Matsalu Bay]. Loodusevaatlusi, 1978, 166–176 [in Estonian].

Mägi, E. 2003. Kasari luha ja Matsalu siselahe roostike linnustik ning veerežiimi muutmise mõjust sellele [Bird life on the Kasari meadow and in reed beds of Matsalu Bay and the influence of water regime changes on it]. Loodusevaatlusi 2000–2002, 105–127 [in Estonian].

Maheu-Giroux, M. & de Blois, S. 2007. Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landscape Ecology, 22, 285–301.
http://dx.doi.org/10.1007/s10980-006-9024-z

Mal, T. K. & Narine, L. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Canadian Journal of Plant Science, 84, 365–396.
http://dx.doi.org/10.4141/P01-172

Mardiste, H. & Kaasik, T. 1985. Matsalu lahe ja Kasari jõe hüdroloogiline režiim. In Matsalu – rahvusvahelise täht­susega märgala [Matsalu – a Wetland of International Significance] (Kumari, E., ed.), pp. 15–25. Valgus, Tallinn [in Estonian].

Meriste, M., Kirsimäe, K. & Freiberg, L. 2012. Relative sea-level changes at shallow coasts inferred from reed bed distribution over the last 50 years in Matsalu Bay, the Baltic Sea. Journal of Coastal Research, 28, 1–10.
http://dx.doi.org/10.2112/JCOASTRES-D-10-00049.1

Nõges, T., Laugaste, R., Loigu, E., Nedogarko, I., Skakalski, B. & Nõges, P. 2005. Is the destabilisation of Lake Peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading? Water Science and Technology, 51, 267–274.

Orviku, K., Jaagus, J., Kont, A., Ratas, U. & Rivis, R. 2003. Increasing activity of coastal processes associated with climate change in Estonia. Journal of Coastal Research, 19, 364–375.

Ostendorp, W. 1989. “Die-back” of reeds in Europe – a critical review of literature. Aquatic Botany, 35, 5–26.
http://dx.doi.org/10.1016/0304-3770(89)90063-6

Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Brinson, M. M. (eds). 2009. Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam, 974 pp.

Porgassaar, V. 1993. Content and distribution of phosphorus and nitrogen in coastal waters of West Estonia. Proceedings of the Estonian Academy of Sciences, Ecology, 3, 166–180.

Rice, D., Rooth, J. & Stevenson, J. C. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands, 20, 280–299.
http://dx.doi.org/10.1672/0277-5212(2000)020[0280:CAEOPA]2.0.CO;2

Sanchez, J. M., Otero, X. L. & Izco, J. 1998. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain. Plant Ecology, 136, 1–8.
http://dx.doi.org/10.1023/A:1009712629733

Squires, L. & Van der Valk, A. G. 1992. Water-depth tolerances of the dominant emergent macrophytes of the delta Marsh Manitoba. Canadian Journal of Botany, 70, 1860–1867.
http://dx.doi.org/10.1139/b92-230

Suursaar, Ü. & Kullas, T. 2006. Influence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea. Oceanologia, 48, 361–383.

Suursaar, Ü., Jaagus, J. & Kullas, T. 2006. Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Environment Research, 11, 123–142.

Tiner, R. W. 1993. Using plants as indicators of wetland, Philadelphia. Academy of Natural Sciences of Philadelphia Proceedings, 144, 240–253.

Treier, K., Pajuste, K. & Frey, J. 2004. Recent trends in chemical composition of bulk precipitation at Estonian monitoring stations 1994–2001. Atmospheric Environment, 38, 7009–7019.
http://dx.doi.org/10.1016/j.atmosenv.2004.05.061

Truus, L. & Sassian, K. 1999. Kasari jõe hüdroloogilise režiimi muutumine vooluteede reguleerimise ja luha kuiven­da­mise tagajärjel ning selle mõju Kasari luha taimkattele [Changes in the Kasari River hydrological regime due to dredging and its influence on Kasari meadow vegetation]. Loodusevaatlusi 1997–1999, 105–111 [in Estonian].

Vallner, L., Sildvee, H. & Torim, A. 1988. Recent crustal movements in Estonia. Journal of Geodynamics, 9, 215–223.
http://dx.doi.org/10.1016/S0264-3707(88)80066-8

Van der Putten, W. H. 1997. Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on reed die-back and progression (1993–1994). Aquatic Botany, 59, 263–275.
http://dx.doi.org/10.1016/S0304-3770(97)00060-0

Veering, L. 1983. Matsalu märgala sisevetevõrk [Waterways of Matsalu wetland]. Eesti Loodus, 11, 720–723 [in Estonian].

Vellner, A. (ed.). 1928a. Sisevete uurimise büroo aastaraamat 1925 [Jahrbuch des Hydrometrischen Büros Estlands 1925]. 177 pp. [in Estonian and German].

Vellner, A. (ed.). 1928b. Sisevete uurimise büroo aastaraamat 1926 [Jahrbuch des Hydrometrischen Büros Estlands 1925]. 170 pp.  [in Estonian and German].

Vetemaa, M., Eschbaum, R., Verliin, A., Albert, A., Eero, M., Lillemägi, R., Pihlak, M. & Saat, T. 2006. Annual and seasonal dynamics of fish in the brackish-water Matsalu Bay, Estonia. Ecology of Freshwater Fish, 15, 211–220.
http://dx.doi.org/10.1111/j.1600-0633.2006.00134.x

Viikman, H. 1931. Veeteede valitsuse süvendustööde ujuvad abinõud ja nendega seotud süvendustööd [Dredging equipment and dredging works at the Estonian Maritime Administration]. Tehnika Ajakiri, 1, 9–10 [in Estonian].

Vretare, V., Weisner, S. E. B., Strand, J. A. & Graneli, W. 2001. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquatic Botany, 69, 127–145.
http://dx.doi.org/10.1016/S0304-3770(01)00134-6

Weisner, S. E. B. 1987. The relation between wave exposure and distribution of emergent vegetation in a eutrophic lake. Freshwater Biology, 18, 537–544.
http://dx.doi.org/10.1111/j.1365-2427.1987.tb01338.x

Weisner, S. E. B. 1996. Effects of an organic sediment on performance of young Phragmites australis clones at different water depth treatments. Hydrobiologia, 330, 189–194.
http://dx.doi.org/10.1007/BF00024207

Weisner, S. E. B. & Ekstam, B. 1993. Influence of germination time on juvenile performance of Phragmites australis on temporarily exposed bottoms – implications for the colonization of lake beds. Aquatic Botany, 45, 107–118.
http://dx.doi.org/10.1016/0304-3770(93)90017-Q

Weisner, S. E. B. & Strand, J. A. 1996. Rhizome architecture in Phragmites australis in relation to water depth: implications for within-plant oxygen transport distance. Folia Geobotanica Phytotaxonomia, 31, 91–97.
http://dx.doi.org/10.1007/BF02803998

Weisner, S. E. B., Graneli, W. & Ekstam, B. 1993. Influence of submergence on growth of seedlings of Scirpus lacustris and Phragmites australis. Freshwater Biology, 29, 371–375.
http://dx.doi.org/10.1111/j.1365-2427.1993.tb00771.x

Zaitseva-Pärnaste, I., Suursaar, Ü., Kullas, T., Lapimaa, S. & Soomere, T. 2009. Seasonal and long-term variations of wave conditions in the northern Baltic Sea. Journal of Coastal Research, 56, 277–281.

 

Back to Issue