ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Provenance shift in Cambrian mid-Baltica: detrital zircon chronology of Ediacaran–Cambrian sandstones in Estonia; pp. 251–256
PDF | doi: 10.3176/earth.2014.27

Authors
Heikki Bauert, Yukio Isozaki, Anne Põldvere, Hiroki Nakahata, Kazumasa Aoki, Shuhei Sakata, Takafumi Hirata
Abstract

In order to clarify the tectono-sedimentary history of Paleozoic Baltica, age spectra of detrital zircon grains from the Ediacaran (Kotlin Regional Stage) and Lower Cambrian sandstones (lowermost Lontova and Lükati formations) in western Estonia in central Baltica were analyzed by LA-ICPMS. The abundant occurrence of Archean to Mesoproterozoic (2800–1000 Ma) zircon grains was confirmed in all samples. The new data provided the following information on the provenance of siliciclastic material as well as a major change in the sedimentary regime of the Paleo-Baltic basin during the Early Cambrian: (1) the Ediacaran–Lower Cambrian Paleo-Baltic basin received abundant terrigenous clastics from the core of Baltica underlain by the Archean–Mesoproterozoic crystalline crust, (2) the exposed surface area of the 1600 Ma Rapakivi granites apparently was more extensive during the Ediacaran–Early Cambrian than at present, (3) a major re-organization of the basin geometry occurred in the middle Early Cambrian (ca 530–515 Ma) in central Baltica, inducing a change in the sediment supply system, (4) in contrast to the total absence of Neoproterozoic detrital zircon grains before the middle Early Cambrian, their sudden appearance at this time, together with consistent occurrence at least until the mid-Devonian, suggests a significant uplift event located in southeast Baltica and/or in a more easterly land domain (e.g., in Sarmatia), (5) possible sources for the Neoproterozoic zircon grains include the peripheral mobile belts with pan-African signatures around Baltica, e.g., the so-called Gondwanan fragments along the Tornquist margin to the southwest and the Timanian belt along the northeastern margin.

References

Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London, 164, 257–275.
http://dx.doi.org/10.1144/0016-76492006-115

Delabroye, A. & Vecoli, M. 2010. The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about the Late Ordovician event stratigraphy. Earth-Science Reviews, 98, 269–282.
http://dx.doi.org/10.1016/j.earscirev.2009.10.010

Gee, D. G. & Stephenson, R. A. 2006. The European lithosphere: an introduction. In European Lithosphere Dynamics (Gee, D. G. & Stephenson, R. A., eds), Geological Society of London Memoirs, 32, 1–9.

Kuznetsov, N. B., Natapov, L. M., Belousova, E. A., O’Reilly, S. Y. & Griffin, W. L. 2010. Geochronological, geo­chemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models. Gondwana Research, 17, 583–601.
http://dx.doi.org/10.1016/j.gr.2009.08.005

Kuznetsov, N. B., Orlov, S. Y., Miller, E. L., Shazillo, A. V., Dronov, A. V., Soboleva, A. A., Udoratina, O. V. & Gehrels, G. 2011. First results of U/Pb dating of detrital zircons from Early Paleozoic and Devonian sandstones of the Baltic–Ladoga region (South Ladoga area). Doklady Earth Sciences, 438, 759–765.
http://dx.doi.org/10.1134/S1028334X11060316

Lehtinen, M., Nurmi, P. A. & Rämö, O. T. (eds). 2005. The Precambrian Bedrock of Finland – Key to the Evolution of the Fennoscandian Shield. Elsevier, Amsterdam, 736 pp.

Linnemann, U., Herbosch, A., Liégeois, J.-P., Pin, C., Gärtner, A. & Hofmann, M. 2012. The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth-Science Reviews, 112, 126–154.
http://dx.doi.org/10.1016/j.earscirev.2012.02.007

McKerrow, W. S., Niocaill, C. M. & Dewey, J. F. 2000. The Caledonian orogeny redefined. Journal of Geological Society, London, 157, 1149–1154.
http://dx.doi.org/10.1144/jgs.157.6.1149

Mens, K. & Pirrus, E. 1997. Cambrian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedu­mäe, A., eds), pp. 39–51. Estonian Academy Publishers, Tallinn.

Miller, E. L., Kuznetsov, N., Soboleva, A., Udoratina, O., Grove, M. J. & Gehrels, G. 2011. Baltica in the Cordillera? Geology, 39, 791–794.
http://dx.doi.org/10.1130/G31910.1

Nawrocki, J. & Poprawa, P. 2006. Development of Trans-European Suture Zone in Poland: from Ediacaran rifting to Early Palaeozoic accretion. Geological Quarterly, 50, 59–76.

Nielsen, A. T. & Schovsbo, N. H. 2011. The Lower Cambrian of Scandinavia: depositional environment, sequence strati­graphy and palaeogeography. Earth-Science Reviews, 107, 207–310.
http://dx.doi.org/10.1016/j.earscirev.2010.12.004

Põldvere, A., Isozaki, Y., Bauert, H., Aoki, K., Sakata, S. & Hirata, T. 2014. Provenance of the Lower–Middle Paleozoic of Estonia in central Baltica: a possible link to Avalonia. GFF, 136, 214–217.
http://dx.doi.org/10.1080/11035897.2013.873986

Raukas, A. & Teedumäe, A. (eds). 1997. Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn, 436 pp.

Schmitz, B., Häggström, T. & Tassinari, M. 2003. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science, 300, 961–964.
http://dx.doi.org/10.1126/science.1082182

Torsvik, T. H. & Cocks, L. R. M. 2013. New global palaeo­geographical reconstructions for the Early Palaeozoic and their generation. Geological Society of London Memoirs, 38, 5–24.

Valverde-Vaquero, P., Dörr, W., Belka, Z., Franke, W., Wiszniewska, J. & Schastok, J. 2000. U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth and Planetary Science Letters, 184, 225–240.
http://dx.doi.org/10.1016/S0012-821X(00)00312-5

Back to Issue