ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Carbonate cementation in the late glacial outwash and beach deposits in northern Estonia; pp. 30–44
PDF | doi: 10.3176/earth.2014.03

Authors
Maris Rattas, Pille Lomp, Argo Jõeleht
Abstract

The sedimentary environments, morphology and formation of carbonate cement in the late glacial glaciofluvial outwash and beach deposits in northern Estonia are discussed. Cementation is observed in well-drained, highly porous carbonaceous debris-rich gravel and sand-forming, resistant ledges in otherwise unconsolidated sediments. The cemented units occur as laterally continuous layers or as isolated lenticular patches with thicknesses from a few centimetres to 3 m. The cement is found in two main morphologies: (1) cement crusts or coatings around detrital grains and (2) massive cement almost entirely filling interparticle pores and intraparticle voids. It is exclusively composed of low-Mg calcite with angular equant to slightly elongated rhombohedral and scalenohedral or prismatic crystals, which indicate precipitation from meteoric or connate fresh surface (glacial lake) water and/or near-surface groundwater under low to moderate supersaturation and flow conditions. The absence of organic structures within the cement suggests that cementation is essentially inorganic. The cement exhibits both meteoric vadose and phreatic features and most probably occurred close to the vadose–phreatic interface, where the conditions were transitional and/or fluctuating. Cementation has mainly taken place by CO2-degassing in response to fluctuations in groundwater level and flow conditions, controlled by the Baltic Ice Lake water level, and seasonal cold and/or dry climate conditions.

References

Aber, J. 1979. Glacial conglomerates of the Appalachian Plateau, New York. Quaternary Research, 11, 185–196.
http://dx.doi.org/10.1016/0033-5894(79)90003-6

Aharon, P. 1988. Oxygen, carbon and U-series isotopes of aragonites from Vestfold Hills, Antarctica: clues to geo­chemical processes in subglacial environments. Geochimica et Cosmochimica Acta, 52, 2321–2331.
http://dx.doi.org/10.1016/0016-7037(88)90134-2

Björck, S. 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International, 27, 19–40.
http://dx.doi.org/10.1016/1040-6182(94)00057-C

Candy, I. 2002. Formation of a rhizogenic calcrete during a glacial stage (Oxygen Isotope Stage 12): its palaeo­environmental stratigraphic significance. Proceedings of the Geologists’ Association, 113, 259–270.

Elbracht, J. 2010. Karbonatische Zementation pleistozäner Lockersedimente Nordwest-Deutschlands. Geologisches Jahrbuch, Sonderhefte Reihe A 2. Bundesanstalt für Geo­­wissenschaften und Rohstoffe und dem Landesamt für Bergbau, Energie und Geologie. Hannover, 225 pp.

Fairchild, I. J. & Spiro, B. 1990. Carbonate minerals in glacial sediments: geochemical clues to paleoenvironment. In Glacimarine Environments: Processes and Sediments (Dowdeswell, J. A. & Scourse, J. D., eds), Geological Society, London, Special Publication, 53, 241–256.

Fairchild, I. J., Bradby, L. & Spiro, B. 1994. Reactive carbonate in glacial systems: a preliminary synthesis of its creation, dissolution and reincarnation. In Earth’s Glacial Record (Deynoux, M., Miller, J., Domack, E., Eyles, N., Fairchild, I. J. & Young, G. M., eds), pp. 176–192. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511628900.014

Folk, R. L. 1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Petrology, 44, 40–53.

Given, R. K. & Wilkinson, B. H. 1985. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. Journal of Sedimentary Petrology, 55, 109–119.

Gonzalez, L. A., Carpenter, S. J. & Lohmann, K. C. 1992. Inorganic calcite morphology: roles of fluid chemistry and fluid flow. Journal of Sedimentary Petrology, 62, 382–399.

Goodwin, I. D. & Hellstrom, J. 2007. Glacio-lacustrine aragonite deposition, meltwater evolution and glacial history during isotope stage 3 at Radok Lake, Amery Oasis, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 19, 365–372.
http://dx.doi.org/10.1017/S0954102007000466

Hall, J. S., Mozley, P., Davis, J. M. & Roy, N. D. 2004. Environments of formation and controls on spatial distribution of calcite cementation in Plio-Pleistocene fluvial deposits, New Mexico, U.S.A. Journal of Sedimentary Research, 74, 643–653.
http://dx.doi.org/10.1306/020904740643

Jacka, A. D. 1974. Differential cementation of a Pleistocene carbonate fanglomerate, Guadalupe Mountains. Journal of Sedimentary Petrology, 44, 85–92.

Kadastik, E. 2004. Upper-Pleistocene stratigraphy and deglaciation history in Northwestern Estonia. Dissertationes Geologicae Universitatis Tartuensis, 15, 1–128 pp. Tartu University Press, Tartu.

Kalm, V. 2006. Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quaternary Science Reviews, 25, 960–975.
http://dx.doi.org/10.1016/j.quascirev.2005.08.005

Kalm, V., Raukas, A., Rattas, M. & Lasberg, K. 2011. Pleistocene glaciations in Estonia. In Quaternary Glaciations – Extent and Chronology. Part IV: A Closer Look (Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds), pp. 95–104. Elsevier, Amsterdam.
http://dx.doi.org/10.1016/B978-0-444-53447-7.00008-8

Karukäpp, R., Moora, T. & Pirrus, R. 1996. Geological events determining the Stone Age environment of Kunda. In Coastal Estonia. Recent Advances in Environmental and Cultural History (Hackens, T., Hicks, S., Lang, V., Miller, U. & Saarse, L., eds), PACT 51, 219–229.

Khadkikar, A. S. 1999. Trough cross-bedded conglomerate facies. Sedimentary Geology, 128, 39–49.
http://dx.doi.org/10.1016/S0037-0738(99)00060-3

Knight, J. 1998. Origin and significance of calcaerous concretions within glacial outwash in the Tempo Valley, north-central Ireland. Boreas, 27, 81–87.
http://dx.doi.org/10.1111/j.1502-3885.1998.tb00869.x

Lacelle, D. 2007. Environmental setting, (micro)morphologies and stable C–O isotope composition of cold climate carbonate precipitates – a review and evaluation of their potential as paleoclimatic proxies. Quaternary Science Reviews, 26, 1670–1689.
http://dx.doi.org/10.1016/j.quascirev.2007.03.011

Lacelle, D., Lauriol, B. & Clark, I. D. 2006. Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: implications in paleoclimatic studies. Chemical Geology, 234, 1–16.
http://dx.doi.org/10.1016/j.chemgeo.2006.04.001

Lacelle, D., Lauriol, B. & Clark, I. D. 2007. Origin, age and paleoenvironmental significance of carbonate precipitates in a granitic environment, Akshayuk Pass, Baffin Island, Canada. Canadian Journal of Earth Sciences, 44, 61–79.
http://dx.doi.org/10.1139/e06-088

Lauriol, B. & Clark, I. D. 1999. Fissure calcretes in the arctic: a paleohydrologic indicator. Applied Geochemistry, 14, 775–785.
http://dx.doi.org/10.1016/S0883-2927(98)00090-0

Leonard, J. E., Cameron, B., Pilkey, O. H. & Friedman, G. M. 1981. Evaluation of cold-water carbonates as a possible palaeoclimatic indicator. Sedimentary Geology, 28, 1–28.
http://dx.doi.org/10.1016/0037-0738(81)90031-2

Miidel, A., Paap, Ü., Raukas, A. & Rähni, E. 1969. On the origin of the Vaivara Hills (Sinimäed) in NE Estonia. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia, 18, 370–376 [in Russian, with English summary].

Orviku, K. 1926. Rändpangaseid Eestis [Erratic boulders in Estonia]. Loodusuurijate Seltsi Aruanded, 33, 48–56.

Orviku, K. 1960. Nekotorye voprosy geomorfologii Éstonii [Some Problems of the Geomorphology of Estonia]. Akademiya Nauk SSSR, Geomorfologicheskaya Komissiya, Moskva, 17 pp.

Otvos, E. G. 2000. Beach ridges – definitions and significance. Geomorphology, 32, 83–108.
http://dx.doi.org/10.1016/S0169-555X(99)00075-6

Raukas, A., Rähni, E. & Miidel, A. 1971. Kraevye lednikovye obrazovaniya Severonoj Éstonii [Marginal Glacial Formations in North Estonia]. Valgus, Tallinn, 226 pp. [in Russian, with English summary].

Rosentau, A., Vassiljev, J., Hang, T., Saarse, L. & Kalm, V. 2009. Development of the Baltic Ice Lake in the eastern Baltic. Quaternary International, 206, 16–23.
http://dx.doi.org/10.1016/j.quaint.2008.10.005

Saarse, L., Vassiljev, J., Rosentau, A. & Miidel, A. 2007. Reconstructed Late Glacial shore displacement in Estonia. Baltica, 20(1/2), 35–45.

Sharp, M., Tison, J. L. & Fierens, G. 1990. Geochemistry of subglacial calcites: implications for the hydrology of the basal water film. Arctic and Alpine Research, 22, 141–152.
http://dx.doi.org/10.2307/1551299

Suuroja, K. 2006. Baltic Klint in North Estonia as a Symbol of Estonian Nature. Ministry of the Environment, Tallinn, 224 pp.

Vieira, M. M. & De Ros, L. F. 2006. Cementation pattern and genetic implications of Holocene beachrock from north­eastern Brazil. Sedimentary Geology, 192, 207–230.
http://dx.doi.org/10.1016/j.sedgeo.2006.04.011

Vogt, T. & Corte, A. E. 1996. Secondary precipitates in Pleistocene and present cryogenic environments (Mendoza Precordillera, Argentina, Transbaikalia, Siberia, and Seymour Island, Antarctica). Sedimentology, 43, 53–64.
http://dx.doi.org/10.1111/j.1365-3091.1996.tb01459.x

Back to Issue