ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Using a titanium-in-quartz geothermometer for crystallization temperature estimation of the Palaeoproterozoic Suursaari quartz porphyry; pp. 195–204
PDF | doi: 10.3176/earth.2012.4.01

Authors
Kairi Ehrlich, Evelin Verš, Juho Kirs, Alvar Soesoo
Abstract

The Suursaari volcanic sequence represents volcanic activity related to Wiborg Batholith rapakivi intrusions in the southern part of the Fennoscandian Shield. The estimated pressure conditions for batholith granitic rocks are 1–5 kbar and crystallization temperatures range from 670 to 890 °C. To describe the temperature regime of the Suursaari volcanic system, a rock sample was taken from the Mäkiinpäällys Mountain outcrop and analysed with laser ablation inductively coupled plasma mass spectrometry. Sample spots were selected from quartz phenocrysts and groundmass. Quartz crystallization temperatures were calculated by the Ti-in-quartz method that takes into account rutile equilibrium and Ti activity in each phase. The calculated crystallization temperatures of the Suursaari quartz porphyry are in the range of 647–738 °C. The results show that the Suursaari quartz porphyry contains two generations of quartz which can be distinguished on the basis of crystallization temperatures: phenocrysts crystallized at higher and groundmass quartz at lower temperature.

References

Amelin, Y. V., Larin, A. M. & Robert, D. T. 1997. Chrono­logy of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contributions to Mineralogy and Petrology, 127, 353–368.
http://dx.doi.org/10.1007/s004100050285

Bachmann, O. 2010. The petrology evolution and pre-eruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc). Central European Journal of Geosciences, 2, 270–305.
http://dx.doi.org/10.2478/v10085-010-0009-4

Behr, W. M. & Platt, J. P. 2011. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth and Planetary Science Letters, 303, 181–192.
http://dx.doi.org/10.1016/j.epsl.2010.11.044

Eklund, O. & Shebanov, A. D. 1999. The origin of rapakivi texture by sub-isothermal decompression. Precambrian Research, 95, 129–146.
http://dx.doi.org/10.1016/S0301-9268(98)00130-2

Eklund, O. & Shebanov, A. 2005. Prolonged postcollisional shoshonitic magmatism in the southern Svecofennian domain – a case study of the Åva granite–lamprophyre ring complex. Lithos, 80, 229–247.
http://dx.doi.org/10.1016/j.lithos.2004.06.012

Elliott, B. A. 2001. Crystallization conditions of the Wiborg rapakivi batholith, SE Finland: an evaluation of amphibole and biotite mineral chemistry. Mineralogy and Petrology, 72, 305–324.
http://dx.doi.org/10.1007/s007100170021

Flem, B., Larsen, R. B., Grimstvedt, A. & Mansfeld, J. 2002. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237–247.
http://dx.doi.org/10.1016/S0009-2541(01)00292-3

Girard, G. & Stix, J. 2010. Rapid extraction of discrete magma batches from a large differentiating magma chamber: the Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming. Contributions to Mineralogy and Petrology, 160, 441–465.
http://dx.doi.org/10.1007/s00410-009-0487-1

Götze, J., Plötze, M. & Habermann, D. 2001. Origin, spectral characteristics and practical applications of the cathodo­luminescence (CL) of quartz – a review. Mineral Petrology, 71, 225–250.
http://dx.doi.org/10.1007/s007100170040

Götze, J., Plötze, M., Graupner, T., Hallbauer, D. K. & Bray, C. J. 2004. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochimica et Cosmochimica Acta, 68, 3741–3759.
http://dx.doi.org/10.1016/j.gca.2004.01.003

Götze, J., Plötze, M. & Trautmann, T. 2005. Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 13–21.
http://dx.doi.org/10.2138/am.2005.1582

Holness, M. B. & Sawyer, E. 2008. On the pseudomorphing of melt-filled pores during the crystallization of magmatites. Journal of Petrology, 49, 1343–1363.
http://dx.doi.org/10.1093/petrology/egn028

Johnson, B. W., Bowman, J. R., Nash, B. P., Bartley, J. M. & Valley, J. W. 2009. TitaniQ, cathodluminescence and oxygen isotope analyses of the Alta stock, UT: geo­chemical insights into pluton assembly. Geological Society of America, Abstracts with Programs, 41(7), 58.

Johnson, E. A., Sutherland, C., Logan, M. A. V., Samson, S. D. & Feely, M. 2011. Emplacement conditions of a porphyritic felsite dyke and timing of motion along the Coolin fault at Ben Levy, Co. Galway. Irish Journal of Earth Sciences, 29, 1–13.

Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M. & Urtson, K. 2009. The crystalline basement of Estonia: rock complex of the Palaeoproterozoic Orosirian and Statherian and Meso­proterozoic Calymmian Periods, and regional correlations. Estonian Journal of Earth Sciences, 58, 219–228.
http://dx.doi.org/10.3176/earth.2009.4.01

Kohn, M. J. & Northrup, C. J. 2009. Taking mylonites’ temperatures. Geology, 37, 47–50.
http://dx.doi.org/10.1130/G25081A.1

Koistinen, T., Klein, V., Koppelmaa, H., Korsman, H., Lahtinen, R., Nironen, M., Puura, V., Saltykova, T., Tikhomirov, S. & Yanovskiy, A. 1996. Palaeo­proterozoic Svecofennian orogenic belts in the surroundings of the Gulf of Finland. In Explanation of the Map of Precambrian Basement of the Gulf of Finland and Surrounding Area 1 : 1 mill. (Koistinen, T., ed.), pp. 21–57. Geological Survey of Finland, Special Paper 21.

Larsen, R. B., Polvé, M. & Juve, G. 2000. Granite pegmatite quartz from Evje-Iveland: trace element of high-purity quartz. NGU Bulletin, 436, 57–65.

Larsen, R. B., Henderson, I., Ihlen, P. M. & Jacamon, F. 2004. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615–628.
http://dx.doi.org/10.1007/s00410-004-0580-4

Lowers, H. A., Rusk, B. G. & Koenig, A. 2007. Application of the TitaniQ geothermometer to hydrothermal quartz. Geological Society of America, Abstracts with Programs, 39(6), 607.

Mercer, C. M. & Reed, M. H. 2007. Insights into the formation of deep hydrothermal quartz from the porphyry-copper-molybdenum deposit at Butte, Montana. American Geo­physical Union, abstract V41D-0816 [http://adsabs.harvard.edu//abs/2007AGUFM.V41D0816M, accessed 12 March 2012].

Müller, A., Wiedenbeck, M., Van Den Kerkhof, A. M., Kronz, A. & Simon, K. 2003a. Trace elements in quartz – a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathod­luminescence study. European Journal of Mineralogy, 15, 747–763.
http://dx.doi.org/10.1127/0935-1221/2003/0015-0747

Müller, A., Rene, M., Behr, H.-J. & Kronz, A. 2003b. Trace elements and cathodluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts., Czech Republic). Mineralogy and Petrology, 79, 167–191.
http://dx.doi.org/10.1007/s00710-003-0238-3

Müller, A., Seltmann, R., Kober, B., Eklund, O., Jeffries, T. & Kronz, A. 2008. Compositional zoning of rapakivi feld­spars and coexisting quartz phenocrysts. Canadian Mineralogist, 46, 1417–1442.
http://dx.doi.org/10.3749/canmin.46.6.1417

Nekvasil, H. 1991. Ascent of felsic magmas and formation of rapakivi. American Mineralogist, 76, 1279–1290.

Nironen, M. 2006. Kansainvälinen ekskursio Suursaareen 12.–17.6.2005 [International Excursion to Suursaari 12.–17.06.2005]. Geologi, 58, 23–31 [in Finnish].

Peterman, E. M. & Grove, M. 2010. Growth conditions of symplectic muscovite + quartz: implications for quantifying retrograde metamorphism in exhumed magmatic arcs. Geology, 38, 1071–1074.
http://dx.doi.org/10.1130/G31449.1

Putirka, K., Johnson, M., Kinzler, R., Longhi, J. & Walker, D. 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology, 123, 92–108.
http://dx.doi.org/10.1007/s004100050145

Reid, M. R., Vazquez, J. A. & Schmitt, A. K. 2011. Zircone-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contributions to Mineralogy and Petrology, 161, 293–311.
http://dx.doi.org/10.1007/s00410-010-0564-5

Rämö, O. T. & Haapala, I. 1995. One hundred years of Rapakivi Granite. Mineralogy and Petrology, 52, 129–185.
http://dx.doi.org/10.1007/s00410-010-0564-5

Rämö, O. T., Mänttari, I., Harju, S., Luttinen, A. V., Kohonen, J. & Heinonen, A. P. 2010. Supracrustal rocks associated with the Wiborg rapakivi granite batholith, southeastern Finland and vicinity. In 29th Nordic Geological Winter Meeting, Oslo, January 11–13, 2010. NGF Abstract and Proceedings of the Geological Society of Norway 1. Trondheim: Norsk Geologisk Förening, pp. 167–168.

Shane, P., Smith, V. C. & Nairn, I. 2008. Millennial timescale resolution of rhyolite magma recharge at Tarawere volcano: insights from quartz chemistry and melt inclusions. Contributions to Mineralogy and Petrology, 156, 397–411.
http://dx.doi.org/10.1007/s00410-008-0292-2

Shebanov, A. D., Belyaev, A. M. & Savatenkov, V. M. 1996. The significance of residual source material (restite) in rapakivi granite petrogenesis: an example from Salmi batholith, Russian Karelia. In Symposium on Rapakivi Granites and Related Rocks (Haapala, I., Rämö, O. T. & Kosunen, P., eds), p. 65. Helsinki, Finland.

Smith, V., Shane, P. & Nairn, I. 2010. Insights into silicic melt generation using plagioclase, quartz and melt inclusions from the caldera-forming Rotoiti eruption, Taupo volcanic zone, New Zealand. Contributions to Mineralogy and Petrology, 160, 951–971.
http://dx.doi.org/10.1007/s00410-010-0516-0

Soesoo, A. 1993. Estonian porphyraceous potassium granites: petrochemical subdivision and petrogenetical interpretation. Proceedings of the Estonian Academy of Sciences, Geology, 42, 97–109.

Soesoo, A. 1997. A multivariate statistical analysis of clino­pyroxene composition: empirical coordinates for the crystallisation PT-estimations. GFF, 119, 55–60.
http://dx.doi.org/10.1080/11035899709546454

Soesoo, A. & Niin, M. 1992. Petrographical and petro­chemical features of the Estonian porphyritic potassium granites. Proceedings of the Estonian Academy of Sciences, Geology, 41, 93–107.

Soesoo, A. & Hade, S. 2010. A-type granitoids of Estonia. In International Conference of A-Type Granites and Related Rocks Through Time, Abstract Volume, 18–20.08.2010; Helsinki (Rämö, T., Lukkari, S. & Heinonen, A., eds), pp. 104–106. Helsinki University Press, Helsinki.

Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. & All, T. 2004. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 53, 149–164.

Spear, F. S. & Wark, D. A. 2009. Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. Journal of Metamorphic Geology, 27, 187–205.
http://dx.doi.org/10.1111/j.1525-1314.2009.00813.x

Storm, L. C. & Spear, F. S. 2009. Application of the titanium-in-quartz thermometer to pelitic migmatites from the Adirondack Highlands, New York. Journal of Meta­morphic Geology, 27, 479–494.
http://dx.doi.org/10.1111/j.1525-1314.2009.00829.x

Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K. & Lanzirotti, A. 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160, 743–759.
http://dx.doi.org/10.1007/s00410-010-0505-3

Vaasjoki, M., Rämö, O. T. & Sakko, M. 1991. New U-Pb ages from the Wiborg rapakivi area: constraints on the temporal evolution of the rapakivi granite-anorthosite-diabase dyke association of southeastern Finland. Precambrian Research, 51, 227–243.
http://dx.doi.org/10.1016/0301-9268(91)90102-G

Väisänen, M., Mänttäri, I., Kriegsman, L. M. & Hölttä, P. 2000. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 54, 63–81.
http://dx.doi.org/10.1016/S0024-4937(00)00018-9

Wark, D. A. & Watson, E. B. 2006. TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743–754.
http://dx.doi.org/10.1007/s00410-006-0132-1

Wark, D. A., Hildreth, W., Spear, F. S., Cherniak, D. J. & Watson, E. B. 2007. Pre-eruption recharge of the Bishop magma system. Geology, 35, 235–238.
http://dx.doi.org/10.1130/G23316A.1

Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.
http://dx.doi.org/10.1016/0012-821X(83)90211-X

Wiebe, R. A., Wark, D. A. & Hawkins, D. P. 2007. Insights from quartz cathodoluminescence zoning into crystal­lization of the Vinalhaven granite, coastal Maine. Contributions to Mineralogy and Petrology, 154, 439–453.
http://dx.doi.org/10.1007/s00410-007-0202-z

Wilcock, J., Minarik, W. G., Goff, F. E. & Stix, J. 2009. Compositional and thermal zoning within quartz ejected before, during and after a supervolcanic eruption at 1.256 Ma: Valles Caldera, New Mexico, USA. American Geophysical Union, Fall Meeting, 2009, abstract V23C-2089 [http://adsabs.harvard.edu//abs/2009AGUFM.V23C2089W, accessed 28 May 2012].

Back to Issue