ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Linkage of diagenesis to depositional environments and stratigraphy in the northern part of the Baltic basin; pp. 15–32
PDF | doi: 10.3176/earth.2012.1.02

Authors
Anne Kleesment, Kalle Kirsimäe, Tõnu Martma, Alla Shogenova, Kristjan Urtson, Kazbulat Shogenov
Abstract

The spatial and temporal distribution of carbonate cementation was investigated in Devonian siliciclastic rocks of the northern part of the Baltic basin, using geochemical (oxygen and carbon stable isotope, microprobe and bulk chemical analyses), optical, scanning electron and cathodoluminescence microscope methods. Carbonate cementation in the studied rocks is dolomitic and only rarely calcitic. Dolomite cementation occurs as laterally persistent zones, lenses or concretionary forms. Carbonate-cemented beds are the most common at the level of the maximum flooding surface and within the regressive system tract sediments. Levels of concretionary cementation with dolocrete features possibly mark the position of subaerial unconformities.

Interpretation of dolomite δ13C and δ18O values suggests marine and/or mixed marine-meteoric origin of diagenetic fluids. Marine origin of fluids is interpreted in the diagenetic alteration of siliciclastic interlayers in the Leivu and Kernave sequences that were cemented penecontemporaneously with early diagenetic dolomitization of carbonate rocks. The siliciclastic intervals of the Vadja Formation and partly of the Leivu Formation were cemented somewhat later with dolomite precipitated from mixed marine-meteoric pore water. Carbon isotopic values suggest that carbon was mainly derived from marine sources, except in the Pärnu Formation where negative δ13C values of dolomite indicate that carbon was derived from oxidation of organic materials.

References

Al-Ramadan, K., Morad, S., Proust, J. N. & Al-Aasm, I. 2005. Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence strati­graphic frame­work: evidence from the Upper Jurassic, Boulonnais, NW France. Journal of Sedimentary Research, 75, 943–959.
http://dx.doi.org/10.2110/jsr.2005.072

Becker, G. F. & Day, A. L. 1916. Note on the linear force of growing crystals. Journal of Geology, 24, 313–333.
http://dx.doi.org/10.1086/622342

Benito, M. I., Lohmann, K. C. & Mas, M. 2006. Micro-sized dolomite inclusions in ferroan calcite cements developed during burial diagenesis of Kimmeridgian reefs, Northern Iberian Basin, Spain. Journal of Sedimentary Research, 76, 472–482.
http://dx.doi.org/10.2110/jsr.2006.042

Braithwaite, C. J. R. 1989. Displacive calcite and grain breakage in sandstones. Journal of Sedimentary Petrology, 59, 258–266.

Buczynski, C. & Chafetz, H. S. 1987. Siliciclastic grain breakage and displacement due to the carbonate crystal growth: an example from the Lueders Formation (Permian) of north-central Texas, U.S.A. Sedimentology, 34, 837–843.
http://dx.doi.org/10.1111/j.1365-3091.1987.tb00807.x

Cherian, A., Chandrasekar, N. & Rajamanickam, V. 2004. Light minerals of beach sediments from Southern Tamilnadu, south east coast of India. Oceanologia, 46, 233–252.

Cocks, L. M. R. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of Paleozoic. European Lithosphere Dynamics, Geological Society London, Memoirs, 32, 83–95.

Dapples, E. C. 1971. Physical classification of carbonate cement in quartzose sandstones. Journal of Sedimentary Petrology, 41, 196–204.

El-ghali, M. A. K., Mansurbeg, H., Morad, S., Al-Aasm, I. & Ajdanlinsky, G. 2006. Distribution of diagenetic alterations in fluvial and paralic deposits within sequence stratigraphic framework: evidence from the Petrohan Terrigenous Group and the Svidol Formation, Lower Triassic, NW Bulgaria. Sedimentary Geology, 190, 299–321.
http://dx.doi.org/10.1016/j.sedgeo.2006.05.021

Estupiñan, J., Marfil, R., Delgado, A. & Permanyer, A. 2007. The impact of carbonate cements on the reservoir quality in the Napo Fm sandstones (Cretaceous Oriente Basin, Ecuador). Geologica Acta, 5, 89–107.

Hardie, L. A. 1987. Dolomitization: a critical view of some current views. Journal of Sedimentary Petrology, 57, 166–187.

Hatch, F. H., Rastall, R. H. & Black, M. 1938. The Petrology of the Sedimentary Rocks. George Allen & Unwin Ltd, London, 383 pp.

Immenhauser, A., Porta, G. D., Kenter, J. A. M. & Bahamonde, J. R. 2003. An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology, 50, 953–959.
http://dx.doi.org/10.1046/j.1365-3091.2003.00590.x

Joachimski, M. M., Geldern, R., Breisig, S., Buggish, W. & Day, J. 2004. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93, 542–553.

Jõeleht, A. & Kukkonen, I. T. 2002. Physical properties of Vendian to Devonian sedimentary rocks in Estonia. GFF, 124, 65–72.
http://dx.doi.org/10.1080/11035890201242065

Kadir, S., Eren, M. & Atabey, E. 2010. Dolocretes and associated palygorskite occurrences in siliciclastic red mudstones of the Sariyer Formation (Middle Miocene), southeastern side of the Çanakkale Strait, Turkey. Clays and Clay Minerals, 58, 205–219.
http://dx.doi.org/10.1346/CCMN.2010.0580206

Ketzer, J. M., Morad, S., Evans, R. & Al-Aasm, I. S. 2002. Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework: evidence from the Mullighmore Formation (Carboniferous), NW Ireland. Journal of Sedimentary Research, 72, 760–774.
http://dx.doi.org/10.1306/042202720760

Ketzer, J. M., Morad, S., Nystuen, J. P. & De Ros, L. F. 2003. The role of the Cimmerian Unconformity (Early Cretaceous) on the kaolinitization and reservoir quality evolution of Triassic sandstones of the Snorre Field, North Sea. In Clay-Mineral Cementation in Sandstones (Worden, R. & Morad, S., eds), International Association of Sedimentologists Special Publication, 34, 353–374.

Khadkikar, A. S., Chamyal, L. S. & Ramesh, R. 2000. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climate. Palaeo­geography, Palaeoclimatology, Palaeoecology, 162, 239–273.
http://dx.doi.org/10.1016/S0031-0182(00)00130-9

Khalaf, F. I. 2007. Occurrence and genesis of calcrete and dolocrete in the Mio-Pleistocene fluviatile sequence in Kuwait, northeast Arabian Peninsula. Sedimentary Geology, 199, 129–139.
http://dx.doi.org/10.1016/j.sedgeo.2007.01.021

Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151–163.
http://dx.doi.org/10.1180/claymin.1999.034.1.16

Kleesment, A. 1994. Subdivision of the Aruküla Stage on the basis of the lithological and mineralogical criteria. Proceedings of the Estonian Academy of Sciences, Geology, 43, 57–68.

Kleesment, A. 1995. Lithological characteristics of the uppermost terrigenous Devonian complex in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 44, 221–233.

Kleesment, A. 1997. Devonian sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 205–208. Estonian Academy Publishers, Tallinn.

Kleesment, A. 2008. Some lithological signatures of basin evolution in Baltic Devonian sequences. In The Seventh Baltic Stratigraphical Conference, Abstracts & Field Guide (Hints, O., Ainsaar, L., Männik, P. & Meidla, T., eds), p. 37. Geological Society of Estonia, Tallinn.

Kleesment, A. 2009. Roundness and surface features of quartz grains in Middle Devonian deposits of the East Baltic and their palaeogeographical implications. Estonian Journal of Earth Sciences, 58, 71–84.
http://dx.doi.org/10.3176/earth.2009.1.07

Kleesment, A. & Mark-Kurik, E. 1997. Middle Devonian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 112–121. Estonian Academy Publishers, Tallinn.

Kleesment, A. & Shogenova, A. 2005. Lithology and evolution of Devonian carbonate and carbonate-cemented rocks in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 54, 153–180.

Kuršs, V. M. 1975. Litologiya i poleznye iskopaemye terrigennogo devona Glavnogo polya [Lithology and Mineral Resources of Terrigenous Devonian of the Main Devonian Field]. Zinatne, Riga, 216 pp. [in Russian].

Kuršs, V. M. 1992. Devonskoe terrigennoe osadkonakoplenie na Glavnom devonskom pole [Devonian Terrigenous Deposition on the Main Devonian Field]. Zinatne, Riga, 208 pp. [in Russian].

Land, L. S. 1985. The origin of massive dolomite. Journal of Geological Education, 33, 112–125.

Morad, S., Marfil, R., Al-Aasm, I. S. & Gomez-Gras, D. 1992. The role of mixing-zone dolomitization in sandstone cementation: evidence from the Triassic Buntsandstein, the Iberian Range, Spain. Sedimentary Geology, 80, 53–65.
http://dx.doi.org/10.1016/0037-0738(92)90031-L

Morad, S., Ketzer, J. M. & De Ros, L. F. 2000. Spatial and temporal distribution of diagenetic alterations in silici­clastic rocks: implications for mass transfer in sedi­mentary basins. Sedimentology, 47, 95–120.
http://dx.doi.org/10.1046/j.1365-3091.2000.00007.x

Morad, S., Al-Ramadan, K., Ketzer, J. M. & De Ros, L. F. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94, 1267–1309.
http://dx.doi.org/10.1306/04211009178

Mørk, M. B. E. & Moen, K. 2007. Compaction micro­structures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis. Journal of Structural Geology, 29, 1843–1854.
http://dx.doi.org/10.1016/j.jsg.2007.08.004

Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbatshev, V. L., Shipilova, E. V., Lankreijerc, A., Bembinova, E. Y. U. & Shalimova, I. V. 1996. Late Precambrian to Triassic history of the European Craton: dynamics of sedimentary basin evolution. Tectono­physics, 288, 23–63.
http://dx.doi.org/10.1016/S0040-1951(96)00228-4

Pirrus, E. 2002. The Lithification of Sedimentary Rocks. Technical University of Tallinn, Tallinn, 88 pp. [in Estonian, with English summary].

Pitman, J. K., Goldhaber, M. B. & Spöetl, C. 1997. Regional diagenetic patterns in the St. Peter sandstone: impli­cations for brine migration in the Illinois basin. U.S. Geological Survey Bulletin, 2094-A, 1–17.

Plink-Björklund, P. & Björklund, L. 1999. Sedimentary response in the Baltic Devonian Basin to postcollisional events in the Scandinavian Caledonides. GFF, 121, 79–80.

Pontén, A. & Plink-Björklund, P. 2007. Depositional environ­ments in an extensive tide-influenced delta plain, Middle Devonian Gauja Formation, Devonian Baltic Basin. Sedimentology, 54, 969–1006.
http://dx.doi.org/10.1111/j.1365-3091.2007.00869.x

Qing, H. 1998. Petrography and geochemistry of early-stage, fine-and medium-crystalline dolomites in the Middle Devonian Presqu’ile Barrier at Pine Point, Canada. Sedimentology, 45, 433–446.
http://dx.doi.org/10.1046/j.1365-3091.1998.0154f.x

Rogers, A. F. & Reed, R. D. 1926. Sand-calcite crystals from Monterey County, California. American Mineralogist, 11, 23–28.

Saigal, G. C. & Walton, E. K. 1988. On the occurrence of displacive calcite in Lower Old Red Sandstone of Carnousite, eastern Scotland. Journal of Sedimentary Petrology, 58, 131–135.

Salem, A. M., Ketzer, J. M., Morad, S., Rizk, R. R. & Al-Aasm, I. S. 2005. Diagenesis and reservoir-quality evolution on incised-valley sandstones: evidence from the Abu Madi gas reservoirs (Upper Miocene), the Nile delta basin, Egypt. Journal of Sedimentary Research, 75, 572–584.
http://dx.doi.org/10.2110/jsr.2005.047

Schmid, S., Werden, R. H. & Fisher, Q. J. 2006. Sedimentary facies and the context of dolocrete in the Lower Triassic Sherwood Sandstone group: Corrib Field west of Ireland. Sedimentary Geology, 187, 205–227.
http://dx.doi.org/10.1016/j.sedgeo.2005.12.028

Seilacher, A. 2001. Concretion morphologies reflecting dia­genetic and epigenetic pathways. Sedimentary Geology, 143, 41–57.
http://dx.doi.org/10.1016/S0037-0738(01)00092-6

Shogenova, A., Kleesment, A., Hirt, A., Pirrus, E., Kallaste, T., Shogenov, K. & Vaher, R. 2009. Composition and properties of the iron hydroxides – cemented lenses in Estonian sandstone of Middle Devonian age. Studia Geophysica et Geodaetica, 53, 111–131.
http://dx.doi.org/10.1007/s11200-009-0007-9

Sinha, R., Tandon, S. K., Sanyal, P., Gibling, M. R., Stuben, D., Berner, Z. & Ghanzanfari, P. 2006. Calcretes from the Late Quaternary interfluve in the Ganga Plains, India: carbonate types and isotopic systems in a monsoonal setting. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 214–239.
http://dx.doi.org/10.1016/j.palaeo.2006.05.015

Sliaupa, S., Cyziene, J., Molenaar, N. & Musteikyte, D. 2008. Ferroan dolomite cement in Cambrian sandstones: burial history and hydrocarbon generation of the Baltic sedimentary Basin. Acta Geologica Polonica, 58, 27–41.

Staddon, P. L. 2004. Carbon isotopes in functional soil ecology. Ecology and Evolution, 19, 148–154.
http://dx.doi.org/10.1016/j.tree.2003.12.003

Stinkulis, Ģ. 1999. The boundary between Devonian Rēzekne and Pärnu formations in eastern Latvia: sedimentological aspects. In The Fourth Baltic Stratigraphical Conference, Problems and Methods of Modern Regional Strati­graphy, Abstracts (Lukševičs, E., Stinkulis, Ģ. & Kalniņa, L., eds), pp. 103–105. University of Latvia, Riga.

Stinkulis, Ģ. 2008. Dolocretes in the Devonian deposits of Latvia. In The Seventh Baltic Stratigraphical Conference, Abstracts & Field Guide (Hints, O., Ainsaar, L., Männik, P. & Meidla, T., eds), p. 66, Geological Society of Estonia, Tallinn.

Tamme, A. E. 1964. Litologicheskaya kharakteristika narovskogo gorizonta Éstonii [Lithologic characteristics of the Narova Stage in Estonia]. In Litologiya paleozojskikh otlozhenij Éstonii [Lithology of Paleozoic Rocks of Estonia] (Baukov, S. S., ed.), pp. 19–31. ENSV TA GI, Tallinn [in Russian].

Tänavsuu-Milkeviciene, K. & Plink-Björklund, P. 2009. Recognizing tide-influenced deltas: Middle Devonian strata of the Baltic basin. Journal of Sedimentary Research, 79, 887–905.
http://dx.doi.org/10.2110/jsr.2009.096

Tänavsuu-Milkeviciene, K., Plink-Björklund, P., Kirsimäe, K. & Ainsaar, L. 2009. Coeval versus reciprocal mixed carbonate-siliciclastic deposition, Middle Devonian Baltic Basin, Eastern Europe: implications from the regional tectonic development Sedimentology, 56, 1250–1274.
http://dx.doi.org/10.1111/j.1365-3091.2008.01032.x

Tanner, L. H. 2000. Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chincle Group), Four Corners region, southwestern U.S.A: implications for the Late Triassic paleoclimate. Journal of Sedimentary Research, 70, 1280–1289.
http://dx.doi.org/10.1306/031700701280

Taylor, K. G. & Gawthorpe, R. L. 2003. Basin-scale dolomite cementation of shoreface sandstones in response to sea-level fall. GSA Bulletin, 115, 1218–1229.
http://dx.doi.org/10.1130/B25227.1

Taylor, K. G. & Machent, P. G. 2010. Systematic sequence scale controls on carbonate cementation in a siliciclastic sedimentary basin: examples from Upper Cretaceous shallow marine deposits of Utah and Coloradao, USA. Marine and Petroleum Geology, 27, 1297–1310.
http://dx.doi.org/10.1016/j.marpetgeo.2010.04.009

Taylor, K. G., Gawthorpe, R. L., Curtis, C. D., Marshall, J. D. & Awwiller, D. N. 2000. Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado. Journal of Sedimentary Research, 70, 360–372.
http://dx.doi.org/10.1306/2DC40916-0E47-11D7-8643000102C1865D

Taylor, K. G., Gawthorpe, R. L. & Fannon-Howell, S. 2004. Basin-scale alteration of shoreface sandstones in the Upper Cretaceous Spring Canyon and Aberdeen Members, Blackhawk Formation, Book Cliffs, Utah. Sedimentary Geology, 172, 99–115.
http://dx.doi.org/10.1016/j.sedgeo.2004.08.001

Thyberg, B., Jahren, J., Winje, T., Bjørnlykke, K. & Faleide, J. I. 2009. From mud to shale: rock stiffening by micro-quartz cementation. First Break, 27, 53–59.

Tovmasyan, K., Stinkulis, G. & Plink-Björklund, P. 2008. Depositional environment in the tidally-influenced transgressive succession, Pärnu Regional Stage, Baltic Devonian basin. In Geografija, Geologija, Vides Zinatne: Referatu Tezes, pp. 238–239. Univesity of Latvia, Riga.

Van den Bril, K. & Swennen, R. 2009. Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation. Geologica Belgica, 12, 3–23.

Watts, N. L. 1978. Displacive calcite: evidence from recent and ancient calcretes. Geology, 6, 699–703.
http://dx.doi.org/10.1130/0091-7613(1978)6<699:DCEFRA>2.0.CO;2

Weedman, S. D., Brantley, S. L. & Albrecht, W. 1992. Secondary compaction after secondary porosity: can it form a pressure seal. Geology, 20, 303–306.
http://dx.doi.org/10.1130/0091-7613(1992)020<0303:SCASPC>2.3.CO;2

Wright, W. R., Johnson, A. W., Shelton, K. L., Somerville, I. D. & Gregg, J. M. 2000. Fluid migration and rock interactions during dolomitisation of the Dinatian Irish Midlands and Dublin Basin. Journal of Chemical Exploration, 69–70, 159–164.
http://dx.doi.org/10.1016/S0375-6742(00)00019-4

Zamanzadeh, S. M., Amini, A. & Ghavidel-Syooki, M. 2009. Sequence stratigraphic control on early-diagenetic carbonate cementation of shallow-marine clastic sediments (the Devonian Zakeen Formation, southern Zagros, Iran). Geosciences Journal, 13, 31–57.
http://dx.doi.org/10.1007/s12303-009-0004-6

Back to Issue