ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia; pp. 48–64
PDF | doi: 10.3176/earth.2012.1.04

Authors
Raimonds Kasparinskis, Olgerts Nikodemus
Abstract

This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture) and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]). The results show that it is possible to establish relationships between the distribution of environmental factors and soil groups by applying the generalized linear models in data statistical analysis, using the R 2.11.1 software for processing data from 113 sampling plots throughout the forest territory of Latvia.
A very high diversity of soil groups in a relatively similar geological structure was revealed. For various reasons there is not always close relationship between the soil group, their prefix qualifiers and Quaternary deposits, as well as between forest site types, the dominant tree species and specific soil group and its prefix qualifiers. Close correlation was established between Quaternary deposits, forest site types, dominant tree species and soil groups within nutrient-poor sediments and very rich deposits containing free carbonates. No significant relationship was detected between the CORINE Land Cover 2005 classes, topographical situation and soil group.

References

Bishop, T. F. A., Minasny, B. & McBratney, A. B. 2006. Uncertainty analysis for soil-terrain models. International Journal of Geographical Information Science, 20, 117–134.
http://dx.doi.org/10.1080/13658810500287073

Bockheim, J. G. 2005. Soil endemism and its relation to soil formation theory. Geoderma, 129, 109–124.
http://dx.doi.org/10.1016/j.geoderma.2004.12.044

Bockheim, J. G., Gennadiyev, A. N., Hammer, R. D. & Tandarich, J. P. 2005. Historical development of key concepts in pedology. Geoderma, 124, 23–36.
http://dx.doi.org/10.1016/j.geoderma.2004.03.004

Bui, E. N. & Moran, C. J. 2001. Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data. Geoderma, 103, 79–94.
http://dx.doi.org/10.1016/S0016-7061(01)00070-2

Burrough, P. A. 1993. Soil variability: a late 20th century view. Soils and Fertilizers, 56, 529–562.

Burrough, P. A., van Gaans, P. F. M. & Hootsmans, R. 1997. Continuous classification in soil survey: spatial correlation, confusion and boundaries. Geoderma, 77, 115–135.
http://dx.doi.org/10.1016/S0016-7061(97)00018-9

Bušs, M. 1987. Meža tipoloģija [Forest taxonomy] In Latvijas meži [Forests of Latvia] (Bušs, M. & Vanags, J., eds), pp. 72–81 [in Latvian].

Bušs, K. 1997. Forest ecosystem classification in Latvia. Proceedings of the Latvian Academy of Sciences. Section B, 51, 204–218.

Cressie, N. & Kornak, J. 2003. Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical Science, 18, 436–456.
http://dx.doi.org/10.1214/ss/1081443228

Dobos, E., Carré, F., Hengl, T., Reuter, H. I. & Tóth, G. 2006. Digital Soil Mapping as a Support to Production of Functional Maps. EUR 22123 EN. Office for Official Publications of the European Communities, Luxemburg, 68 pp. Available: http://eusoils.jrc.ec.europa.eu/esdb_archive/ eusoils_docs/other/eur22123.pdf [accessed 14 November 2011].

Fransmeier, D. P., Whiteside, E. P. & Mortland, M. M. 1963. A chronosequence of Podzols in Northern Michigan: III Mineralogy, micromorphology, and net changes occurring during soil formation. Michigan Quarterly Bulletin, 46, 37–57.

Gelumbauskaitė, L. Ž. 2009. Character of sea level changes in the subsiding south-eastern Baltic Sea during Late Quaternary. Baltica, 22, 23–36.

Geological map of Latvia, scale 1 : 500 000. 1981. State Geological Survey. Rīga. Available: kartes.geo.lu.lv [in Latvian].

Gray, J. M., Humphreys, G. S. & Deckers, J. A. 2009. Relation­ships in soil distribution as revealed by a global soil database. Geoderma, 150, 309–323.
http://dx.doi.org/10.1016/j.geoderma.2009.02.012

Grimm, R. & Behrens, T. 2010. Uncertainty analysis of sample locations within digital soil mapping approaches. Geoderma, 155, 154–163.
http://dx.doi.org/10.1016/j.geoderma.2009.05.006

Guo, Y., Gong, P. & Amundson, R. 2003. Pedodiversity in the United States of America. Geoderma, 117, 99–115.
http://dx.doi.org/10.1016/S0016-7061(03)00137-X

Hommel, G. 1988. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75, 383–386.
http://dx.doi.org/10.1093/biomet/75.2.383

Hytteborn, H., Maslov, A. A., Nazimova, D. I. & Rysin, L. P. 2005. Boreal forests of Eurasia. In Ecosystems of the World, 6: Coniferous Forests (Andersson, F. A., ed.), pp. 23–99. Elsevier.

Ibañez, J. J. & De-Alba, S. 2000. Pedodiversity and scaling laws: sharing Martins and Rey’s opinion on the role of the Shannon index as a measure of diversity. Geoderma, 98, 5–9.
http://dx.doi.org/10.1016/S0016-7061(00)00050-1

Ibañez, J. J., De-Alba, S., Bermudez, F. F. & Garcia-Alvarez, A. 1995. Pedodiversity: concepts and measures. Catena, 24, 215–232.
http://dx.doi.org/10.1016/0341-8162(95)00028-Q

Ibañez, J. J., De-Alba, S., Lobo, A. & Zucarello, V. 1998. Pedodiversity and global soil patterns at coarse scales (with Discussion). Geoderma, 83, 171–192.
http://dx.doi.org/10.1016/S0016-7061(97)00147-X

IUSS Working Group WRB. 2007. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports 103. FAO, Rome, 128 pp. Available: http://www.fao.org/ag/agl/agll/wrb/doc/wrb2007_corr.pdf [accessed 14 November 2011].

Jenny, H. 1941. Factors of Soil Formation. A System of Quantitative Pedology. McGraw Hill Book Company, New York, NY, USA. 281 pp.

Karklins, A., Gemste, I., Mezals, H., Nikodemus, O. & Skujans, R. 2009. Latvijas augšņu noteicējs [Taxonomy of Latvian soils]. Latvian University of Agriculture, Jelgava, 240 pp. [in Latvian].

Kõlli, R. & Ellermäe, O. 2001. Soils as basis of Estonian landscapes and their diversity. In Development of European Landscapes, Vol. 2 (Mander, Ü., Printsmann, A. & Palang, H., eds), Publicationes Instituti Geographici Universitatis Tartuensis, 92, 445–448. IALE, Tartu.

Kühn, P. 2003. Micromorphology and Late Glacial/Holocene genesis of Luvisols in Mecklenburg – Vorpommern (NE-Germany). Catena, 54, 537–555.

Lagacherie, P., Robbez Masson, J. M., Nguyen-The, N. & Barthes, J. P. 2001. Mapping of reference area repre­sentativity using a mathematical soilscape distance. Geoderma, 101, 105–118.
http://dx.doi.org/10.1016/S0016-7061(00)00101-4

Laiviņš, M. 1998. Latvijas boreālo priežu mežu sinantropizācija un eitrofikācija [Synantrophisation and eutrophisation of Latvian boreal pine forests]. Latvijas veģetācija, 1, 1–137 [in Latvian].

Latvijas Statistika. 2010. Forestry-key indicators. Available: http://www.csb.gov.lv/en/statistikas-temas/forestry-key-indicators-30729.html [accessed 14 November 2011].

Lundström, U. S., Van Breemen, N. & Bain, D. 2000. The podzolization process. A review. Geoderma, 94, 91–107.
http://dx.doi.org/10.1016/S0016-7061(99)00036-1

McBratney, A. B. 1992. On variation, uncertainty, and informatics in environmental soil management. Australian Journal of Soil Research, 30, 913–935.
http://dx.doi.org/10.1071/SR9920913

McBratney, A. B. 1998. Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling in Agroecosystems, 50, 51–64.
http://dx.doi.org/10.1023/A:1009778500412

McBratney, A. & Minasny, B. 2007. On measuring pedo­diversity. Geoderma, 14, 149–154.
http://dx.doi.org/10.1016/j.geoderma.2007.05.012

McBratney, A. B., Santos, M. L. M. & Minasny, B. 2003. On digital soil mapping. Geoderma, 117, 3–52.
http://dx.doi.org/10.1016/S0016-7061(03)00223-4

McCullagh, P. & Nelder, J. A. 1989. Generalized Linear Models. 2nd edition. Chapman & Hall, New York, 532 pp.

Minasny, B., McBratney, A. B. & Hartemink, A. E. 2010. Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 155, 132–139.
http://dx.doi.org/10.1016/j.geoderma.2009.04.024

Mokma, D. L., Yli-Halla, M. & Lindqvist, K. 2004. Podzol formation in sandy soils of Finland. Geoderma, 120, 259–272.
http://dx.doi.org/10.1016/j.geoderma.2003.09.008

Nartišs, M., Celiņš, I., Zelčs, V. & Dauškans, M. 2009. Stop 8: History of the development and palaeogeography of ice-dammed lakes and inland dunes at Seda sandy plain, north western Vidzeme, Latvia. In Extent and Timing of Weichselian Glaciation Southeast of the Baltic Sea: Abstracts and Guidebook, The INQUA Peribaltic Working Group Field Symposium in Southern Estonia and Northern Latvia, September 13–17, 2009 (Kalm, V., Laumets, L. & Hang, T., eds), pp. 79–81. Tartu Ülikooli Kirjastus, Tartu.

Nelder, J. & Wedderburn, R. W. M. 1972. Generalized linear models. Journal of the Royal Statistical Society, A135, 370–384.
http://dx.doi.org/10.2307/2344614

Palo, A. 2005. Relationships Between Landscape Factors and Vegetation Site Types: Case Study from Saare County, Estonia. Dissertationes Geographicae Universitatis Tartuensis, 114 pp.

Palo, A., Aunap, R. & Mander, Ű. 2005. Predictive vegetation mapping based on soil and topographical data: a case study from Saare County, Estonia. Journal of Nature Conservation, 13, 197–211.
http://dx.doi.org/10.1016/j.jnc.2005.02.007

Phillips, J. D. & Marion, D. A. 2004. Pedological memory in forest soil development. Forest Ecology and Management, 188, 363–380.
http://dx.doi.org/10.1016/j.foreco.2003.08.007

Phillips, J. D. & Marion, D. A. 2005. Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma, 124, 73–89.
http://dx.doi.org/10.1016/j.geoderma.2004.04.004

Protz, R., Ross, G. J., Martini, I. P. & Terasmae, J. 1984. Rate of Podzolic soils formation near Hudson Bay, Ontario. Canadian Journal of Soil Science, 64, 31–49.
http://dx.doi.org/10.4141/cjss84-004

Quinn, G. P. & Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, 556 pp.

Raukas, A. 1997. Evolution of the Baltic Sea. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 268–274. Estonian Academy Publishers, Tallinn.

Reintam, L. 2002. Correlation of the diagnostic properties of soil genetic units for harmonisation of soil map units. In Soil Classification 2001 (Micheli, E., Nachtergaele, F. O., Jones, R. J. A. & Montanarella, L., eds), European Soil Bureau Research Report, 7, EUR 20398 EN, 205–210. Available: http://eusoils.jrc.ec.europa.eu/esdb_archive/ eusoils_docs/esb_rr/n07_ESBResRep07/505Reintam.pdf [accessed 14 November 2011].

Reintam, L., Raukas, A., Kleesment, A., Moora, T. & Kährik, R. 2001. Podzolization in Aeolian sands underlain by Gleysol formation, during nine millennia in southwestern Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 50, 254–281.

Reintam, L., Moora, T. & Raukas, A. 2008. Gleysols on sandy deposits of the Litorina Sea underlain by Histosol formations of Ancylus Lake age in western Estonia. Estonian Journal of Earth Sciences, 57, 231–240.
http://dx.doi.org/10.3176/earth.2008.4.03

Ruskule, A., Nikodemus, O., Kasparinska, Z., Kasparinskis, R. & Brumelis, G. Patterns of afforestation on abandoned agriculture land in Latvia. Agroforestry systems [in press].

Saarse, L., Vassiljev, J., Miidel, A. & Niinemets, E. 2006. Holocene buried organic sediments in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 55, 296–320.

Sakamoto, Y., Ishiguro, M. & Kitagawa, G. 1986. Akaike Information Criterion Statistics. D. Reidel Publishing Company, 290 pp.

Saldaña, A. & Ibáñez, J. J. 2007. Pedodiversity, connectance and spatial variability of soil properties, what is the relationship? Ecological Modelling, 208, 342–352.
http://dx.doi.org/10.1016/j.ecolmodel.2007.06.006

Sarkar, S. 1998. Some probability inequalities for ordered MTP2 random variables: a proof of Simes conjecture. Annals of Statistics, 26, 494–504.
http://dx.doi.org/10.1214/aos/1028144846

Sarkar, S. & Chang, C. K. 1997. Simes’ method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association, 92, 1601–1608.
http://dx.doi.org/10.2307/2965431

Sauer, D., Schülli-Maurer, I., Sperstad, R., Sorensen, R. & Stahr, K. 2008. Podzol development with time in sandy beach deposits in southern Norway. Journal of Plant Nutrition and Soil Science, 171, 483–497.
http://dx.doi.org/10.1002/jpln.200700023

Sauer, D., Schülli-Maurer, I., Sperstad, R., Sorensen, R. & Stahr, K. 2009. Albeluvisol development with time in loamy marine sediments of southern Norway. Quaternary International, 209, 31–43.
http://dx.doi.org/10.1016/j.quaint.2008.09.007

Targulian, V. O. & Krasilnikov, P.V. 2007. Soil system and pedogenic processes: self-organization, time scales, and environmental significance. Catena, 71, 373–381.
http://dx.doi.org/10.1016/j.catena.2007.03.007

[United Nations] United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution. 2006. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. Part IIIa, Expert Panel on Soil Forest Soil Co-ordinating Centre, Research Institute for Nature and Forest, Belgium, 26 pp. Available: http://www.icp-forests.org/pdf/Chapt_3a_2006(1).pdf [accessed 14 November 2011].

Uuemaa, E., Roosaare, J., Kanal, A. & Mander, Ü. 2008. Spatial correlograms of soil cover as an indicator of landscape heterogeneity. Ecological Indicators, 8, 783–794.
http://dx.doi.org/10.1016/j.ecolind.2006.12.002

Zelčs, V., Markots, A., Nartišs, M. & Saks, T. 2011. Chapter 18: Pleistocene glaciations in Latvia. In Ouaternary Glaciations – Extent and Chronology (Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds), Developments in Quaternary Science, 15, 221–229.

Back to Issue