eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2021): 0.811
Bedrock deformations in northeastern Estonia based on ground-penetrating radar data; pp. 189–200

Argo Jõeleht, Ivo Sibul, Mario Mustasaar, Jüri Plado

The Vaivara Deformation Zone (VDZ) in northeastern Estonia was studied with ground-penetrating radar (GPR). While the typical Paleozoic carbonate plateau in northern Estonia is characterized by a subhorizontal continuous reflection pattern in GPR images, the VDZ, located south of the erosional bedrock escarpment, known as the Baltic Klint, frequently contains deformed and tilted limestone blocks, thrusts, and folds. We categorize the structural features seen in the GPR images according to deformation intensity and show their areal distribution. In addition to the VDZ, bedrock segments are deformed in Tõrvajõe village, the Pähklimäed Hills, and Narva town, whereas the distribution and nature of deformations hint at a glaciotectonic origin. The study confirms that GPR is a suitable tool for discovering and interpreting bedrock structures. Auxiliary geological and geophysical techniques are required for outlining of bedrock blocks.


Aber, J. S. and Ber, A. 2007. Glaciotectonism. Developments in Quaternary Science Series, Vol. 6. Elsevier, Amsterdam.

Bakker, M. A. J. and van der Meer, J. J. M. 2003. Structure of a Pleistocene push moraine revealed by GPR: the eastern Veluwe Ridge, The Netherlands. Geological Society, London, Special Publications211, 143–151.

Brandes, C. and Le Heron, D. P. 2010. The glaciotectonic de­formation of Quaternary sediments by fault-propagation folding. Proceedings of the Geologists’ Association121, 270–280.

Busby, J. P. and Merritt, J. W. 1999. Quaternary deformation mapping with ground penetrating radar. Journal of Applied Geophysics41(1), 75–91.

Ehlers, J. and Gibbard, P. L. 2003. Extent and chronology of glaciations. Quaternary Science Reviews22, 1561–1568.

Elkarmoty, M., Tinti, F., Kasmaeeyazdi, S., Bonduà, S. and Bruno, R. 2018. 3D modeling of discontinuities using GPR in a commercial size ornamental limestone block. Construc­tion and Building Materials166, 81–86.

Fitzsimons, S. and Howarth, J. 2020. Development of push moraines in deeply frozen sediment adjacent to a cold-based glacier in the McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms45(3), 622–637.

Ingólfsson, Ó., Benediktsson, Í. Ö., Schomacker, A., Kjær, K. H., Brynjólfsson, S., Jónsson, S. A. et al. 2016. Glacial geo­logical studies of surge-type glaciers in Iceland – Research status and future challenges. Earth-Science Reviews152, 37–69.

Jõeleht, A. and Plado, J. 2010. Architecture of the northeastern rim of the Kärdla impact crater, Estonia, based on ground-penetrating radar studies. In Large Meteorite Impacts and Planetary Evolution IV (Gibson, R. L. and Reimold, W. U., eds). The Geological Society of America Special Paper465, 133–140.

Karukäpp, R. and Raukas, A. 1997. Deglaciation history. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 263–267.

Liner, C. L. and Liner, J. L. 1995. Ground-penetrating radar:  a near-face experience from Washington County, Arkansas. The Leading Edge14(1), 17–21.

Lobanov, J. N. 1976. О природе дислокаций Дудергофских высот в окрестностях Ленинграда (The character of de­formation in Dudergof Heights near Leningrad). Гео­- тектоника,  6, 89–98 (in Russian).

Meidla, T. 2014. Estonia – a Palaeozoic country. In Proceedings of the 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014. Abstracts and Field Guide(Bauert, H., Hints, O., Meidla, T. and Männik, P., eds.). University of Tartu, Tartu, 111–113.

Møller, I. and Jakobsen, P. R. 2002. Sandy till characterized by ground-penetrating radar. In Proceedings of the Ninth International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 29 April–2 May 2002 (Koppenjan, S. and Lee, H., eds.). SPIE, 4758, 308–312.

Mustasaar, M., Plado, J. and Jõeleht, A. 2011. Determination of electromagnetic wave velocity in horizontally layered sedi­mentary target: a ground-penetrating radar study from Silurian limestones, Estonia. Acta Geophysica60(2), 357–370.

Overgaard, T. and Jakobsen, P. R. 2001. Mapping of glacio­tectonic deformation in an ice marginal environment with ground penetrating radar. Journal of Applied Geophysics47(3–4), 191–197.

Pasanen, A. 2009. Radar stratigraphy of the glaciotectonically deformed deposits in the Isoniemi area, Haukipudas, Finland. Bulletin of the Geological Society of Finland, 81(1), 39–51.

Pipan, M., Baradello, L., Forte, E. and Prizzon, A. 2000. GPR study of bedding planes, fractures, and cavities in limestone. In Proceedings of the Eighth International Conference on Ground Penetrating Radar (Noon, D. A., Stickley, G. F. and Longstaff, D., eds). SPIE, 4084, 682–687.

Plado, J. and Davydov, I. 2019. Ground-penetrating radar studies in Narva at Tuleviku 9 and neighboring cadastral units. Study Report. Department of Geology, University of Tartu (in Estonian).

Plado, J., Preeden, U., Jõeleht, A., Pesonen, L. J. and Mertanen, S. 2016. Palaeomagnetism of Middle Ordovician carbonate sequence, Vaivara Sinimäed area, northeast Estonia, Baltica. Acta Geophysica64(5), 1391–1411.

Puura, V. and Vaher, R. 1997. Deep structure. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 163.

Rattas, M. and Kalm, V. 2004. Glaciotectonic deformation pattern in Estonia. Geological Quarterly48(1), 15–22.

Raukas, A. 1995. Estonia – a land of big boulders and rafts. Questiones Geographicae, Special issue, 4, 247–253.

Shihab, S., Al-Nuaimy, W. and Eriksen, A. 2004. Radius estimation for subsurface cylindrical objects detected by ground penetrating radar. In Proceedings of the Tenth International Conference on Ground Penetrating RadarDelft, The Netherlands, 21–24 June 2004 (Slob, E. C., Yarovoy, A. G. and Rhebergen, J. B., eds). IEEE, 319–322.

Sibul, I., Plado, J. and Jõeleht, A. 2017. Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia. Estonian Journal of Earth Sciences66(3), 142–151.

Sigurdsson, T. and Overgaard, T. 1998. Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics40(1–3), 29–36.

Suuroja, K. and Ploom, K. 2016. Vaivara Sinimägede ja dis­lokatsioonide vööndi tekkest (On the formation of Vaivara Sinimäed and dislocation zone). Bulletin of the Geological Survey of Estonia12, 37–56 (in Estonian).

Suuroja, K., Mardim, T., Ploom, K., All, T., Otsmaa, M. and Kõiv, M. 2009a. Eesti geoloogilise baaskaardi Narva (6534) leht. Seletuskiri (The explanatory note to the geological maps of Narva (6534) sheet). Geological Survey of Estonia, Tallinn (in Estonian).

Suuroja, K., Mardim, T., Ploom, K., All, T., Kõiv, M. and Otsmaa, M. 2009b. Eesti geoloogilise baaskaardi Sillamäe (6533) leht. Seletuskiri (The explanatory note to the geological maps of Sillamäe (6533) sheet). Geological Survey of Estonia, Tallinn (in Estonian).

Tuuling, I. and Flodén, T. 2016. The Baltic Klint beneath the central Baltic Sea and its comparison with the North Estonian Klint. Geomorphology263, 1–18.

Vaher, R., Miidel, A. and Raukas, A. 2013. Structure and origin of the Vaivara Sinimäed hill range, Northeast Estonia. Estonian Journal of Earth Sciences62(3), 160–170.

Volin, A. 1974. Диапировые структуры окрестностей Ленин­града (Diapiric structures around Leningrad). Природная обстановка и фауна прошлого8, 142–150 (in Russian).

Zajc, M., Celarc, B. and Gosar, A. 2015. Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia). Environmental Earth Sciences73, 8237–8249.

Back to Issue