eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2021): 0.811
Stable carbon isotope stratigraphy of the Silurian in the Jočionys-299 borehole (eastern Lithuania); pp. 127–134
PDF | 10.3176/earth.2022.09

Tomas Želvys, Antanas Brazauskas, Andrej Spiridonov, Mykolas Balčiūnas, Andrius Garbaras, Sigitas Radzevičius

In recent years it has become commonplace to formalize chemostratigraphic units and identify isotopic zones (chemo­stratigraphic units) from excursions. Stable carbon isotopes have been used in solving stratigraphic problems in the Silurian for more than 30 years. δ13C data supplement other stratigraphic proxies, allowing the subdivision of geological sections and more precise correlation. In this paper we give new δ13C data from the Silurian section of the Jočionys-299 borehole, which is located in eastern Lithuania, crossing shallow marine and lagunal deposits. Based on δ13C variability, the Ireviken carbon isotope excursion (CIE), the Šlilalė CIE, and probably the Valgu CIE have been identified in the investigated section. The Valgu CIE is linked to the lower part of the Švenčionys Formation. The Ireviken CIE is linked to the upper parts of the Švenčionys Formation and the Paprieniai Formation (rise in δ13C values), the Jočionys Formation (moderately stable δ13Ccarb values) and the Verknė Formation (fall in δ13C values). A small negative δ13C shift is documented in the Pabradė Formation. Chemostratigraphy together with biostratigraphic data allow us to correlate eastern Lithuanian lithostratigraphic units (shallow marine environment) with the global Silurian Geochronological Scale more accurately.


Brazauskas, A. 1987. Конодонтовые зоны силурийских отло­жений Литвы (Silurian conodont zones of Lithuania). Geologija (Vilnius), 8, 40–58 (in Russian). 

Cichon-Pupienis, A., Littke, R., Lazauskienė, J., Baniasad, A., Pupienis, D., Radzevičius, S. and Šliauskas, L. 2021. Geochemical and sedimentary facies study – Implication for driving mechanisms of organic matter enrichment in the lower Silurian fine-grained mudstones in the Baltic Basin (W Lithuania). International Journal of Coal Geology244, 103815.

Cocks, L. R. M. and Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews72, 39–66.

Corfield, R. M., Siveter, D. J., Cartlidge, J. E. and McKerrow, W. S. 1992. Carbon isotope excursion near the Wenlock–Ludlow (Silurian) boundary in the Anglo–Welsh area. Geology20(4), 371–374.<0371:CIENTW>2.3.CO;2

Cramer, B. D., Loydell, D. K., Samtleben, C., Munnecke, A., Kaljo, D., Männik, P. et al. 2010. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (<500 kyr) integrated conodont, graptolite and carbon isotope (δ13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic timescale achievable? Geological Society of America Bulletin122(9–10), 1700–1716.

Cramer, B. D., Brett, C. E., Melchin, M. J., Männik, P., Kleffner, M. A., McLaughlin, P. I. et al. 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia44(2), 185–202.

Cramer, B. D., Condon, D. J., Söderlund, U., Marshall, C., Worton, G. J., Thomas, A. T. et al. 2012. U–Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the ‘Big Crisis’. Geological Society of America Bulletin124(11–12), 1841–1857.

Einasto, P. E., Abushik, A. F., Kaljo, D. L., Koren’, T. N., Modzalevskaya, T. L., Nestor, H. E. and Klaamann, E. 1986. Особенности силурийских осадочныхотложений и фаунистических ассоциаций в коровых бассейнах При­балтики и Подолии  (Features of Silurian sedimentary deposits and faunal associations in the crustal basins of the Baltic and Podolia). In Теория и опыт экостратиграфии (Theory and Experience of Ecostratigraphy) (Kaljo, D. L. and Klaamann, E., eds). Valgus, Tallinn, 65–72 (in Russian). 

Fry, C. R., Ray, D. C., Wheeley, J. R., Boomer, I., Jarochowska, E. and Loydell, D. K. 2017. The Homerian carbon isotope excursion (Silurian) within graptolitic successions on the Midland Platform (Avalonia), UK: implications for regional and global comparisons and correlations. GFF139(4), 301–313.

Frýda, J., Lehnert, O., Joachimski, M. M., Männik, P., Kubajko, M., Mergl, M., Farkaš, J. and Frýdová, B. 2021. The Mid-Ludfordian (late Silurian) Glaciation: A link with global changes in ocean chemistry and ecosystem overturns. Earth-Science Reviews220, 103652.

Hammarlund, E. U., Loydell, D. K., Nielsen, A. T. and Schovsbo, N. H. 2019. Early Silurian δ13Corg excursions in the foreland basin of Baltica, both familiar and surprising. Palaeogeography, Palaeoclimatology, Palaeoecology526, 126–135.

Jarochowska, E., Bremer, O., Yiu, A., Märss, T., Blom, H., Mörs, T. and Vajda, V. 2021. Revision of thelodonts, acanthodians, conodonts, and the depositional environments in the Burgen outlier (Ludlow, Silurian) of Gotland, Sweden. GFF143(2–3), 168–189.

Kaljo, D., Kiipli, T. and Martma, T. 1997. Carbon isotope event markers through the Wenlock–Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeography, Palaeo­climatology, Palaeoecology132, 211–223.

Kaljo, D., Martma, T., Grytsenko, V., Brazauskas, A. and Kaminskas, D. 2012. Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area. Estonian Journal of Earth Sciences61(3), 162–180.

Kaminskas, D. 2001. Uenlokio (apatinis silūras) uolienų geo­cheminiai ypatumai Ledų–179 ir Jočionių–299 gręžiniuose (R. Lietuva) (Geochemical peculiarities of Wenlock (Lower Silurian) rocks in Ledai-179 and Jočionys-299 boreholes (E. Lithuania)). Geologija (Vilnius), 35, 3–14.  

Kaminskas, D., Bičkauskas, G. and Brazauskas, A. 2010. Silurian dolostones of eastern Lithuania. Estonian Journal of Earth Sciences59(2), 180–186.

Karatajūtė-Talimaa, V., Valikevičius, J. and Brazauskas, A. 1987. Распространение конодонтов и поводочных в силурийских отложениях Литвы(Distribution of conodonts and vertebrates in the Silurian of Lithuania). Geologija (Vilnius), 8, 59–71 (in Russian). 

Kozłowski, W. 2020. Marine snow and epipelagic suspensoids in the Reda carbonates and a pronounced mid-Ludfordian (Silurian) CIE in the axis of the Baltic Basin (Poland). Acta Geologica Polonica70(4), 529–567. 

Loydell, D. K., Männik, P. and Nestor, V. 2003. Integrated biostratigraphy of the lower Silurian of the Aizpute-41 core, Latvia. Geological Magazine140(2), 205–229.

Małkowski, K., Racki, G., Drygant, D. and Szaniawski, H. 2009. Carbon isotope stratigraphy across the Silurian–Devonian transition in Podolia, Ukraine: evidence for a global bio­geochemical perturbation. Geological Magazine146(5), 674–689.

Männik, P. 2007. An updated Telychian (Late Llandovery, Silurian) conodont zonation based on Baltic faunas. Lethaia40(1), 45–60.

Melchin, M. J. and Holmden, C. 2006. Carbon isotope chemo­stratigraphy of the Llandovery in Arctic Canada: impli- cations for global correlation and sea-level change. GFF128, 173–180.

Melchin, M. J., Sadler, P. M. and Cramer, B. D. 2020. The Silurian Period. In Geologic Time Scale 2020 (Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M., eds). Elsevier, 695–732.

Munnecke, A. and Männik, P. 2009. New biostratigraphic and chemostratigraphic data from the Chicotte Formation (Llandovery, Anticosti Island, Laurentia) compared with the Viki core (Estonia, Baltica). Estonian Journal of Earth Sciences58, 159–169.

Oborny, S. C., Cramer, B. D. and Brett, C. E. 2020. High-resolution event stratigraphy (HiRES) of the Silurian across the Cincinnati Arch (USA) through integrating conodont and carbon isotope biochemostratigraphy, with gamma-ray and sequence stratigraphy. GFF142(4), 309–324.

Paškevičius, J. and Brazauskas, A. 1987. Rytų Lietuvos silūro sekliavandenių jūrinių ir lagūninių uolienų stratigrafijos pagrindimas (Stratigraphic framework for marine and lagoonal shallow-water Silurian rocks of eastern Lithuania) Geologija (Vilnius), 8, 10–28 (in Lithuanian).

Paškevičius, J., Lapinskas, P., Brazauskas, A., Musteikis, P. and Jacyna, J. 1994. Stratigraphic revision of the regional stages of the Upper Silurian part in the Baltic Basin. Geologija (Vilnius), 17, 64–87. 

Radzevičius, S., Spiridonov, A., Brazauskas, A., Dankina, D., Rimkus, A., Bičkauskas, G. et al. 2016. Integrated stra­tigraphy, conodont turnover and palaeoenvironments of the upper Wenlock and Ludlow in the shallow marine succession of the Vilkaviškis-134 core (Lithuania). Newsletters on Stratigraphy,49(2), 321–336.

Rinkevičiūtė, S., Stankevič, R., Radzevičius, S., Meidla, T., Garbaras, A. and Spiridonov, A. 2021. Dynamics of ostra­cod communities throughout the Mulde/lundgreni event: contrasting patterns of species richness and paleocommunity compositional change. Journal of the Geological Society179(1), jgs2021-039.

Samtleben, C., Munnecke, A., Bickert, T. and Pätzold, J. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau85(2), 278–292.

Spiridonov, A., Brazauskas, A. and Radzevičius, S. 2015. The role of temporal abundance structure and habitat preferences in the survival of conodonts during the mid-early Silurian Ireviken mass extinction event. PLoS ONE10(4), e0124146.

Spiridonov, A., Stankevič, R., Gečas, T., Šilinskas, T., Brazauskas, A., Meidla, T. et al. 2017. Integrated record of Ludlow (Upper Silurian) oceanic geobioevents – Coordina­tion of changes in conodont, and brachiopod faunas, and stable isotopes. Gondwana Research51, 272–288.

Spiridonov, A., Samsonė, J., Brazauskas, A., Stankevič, R., Meidla, T., Ainsaar, L. and Radzevičius, S. 2020a. Quan­tifying the community turnover of the uppermost Wenlock and Ludlow (Silurian) conodonts in the Baltic Basin. Palaeo­geography, Palaeoclimatology, Palaeoecology549, 109128.

Spiridonov, A., Stankevič, R., Gečas, T., Brazauskas, A., Kaminskas, D., Musteikis, P. et al. 2020b. Ultra-high res­olution multivariate record and multiscale causal analysis of Pridoli (late Silurian): Implications for global stratigraphy, turnover events, and climate-biota interactions. Gondwana Research86, 222–249.

Štorch, P. and Frýda, J. 2009. Carbon isotope data and graptolite record in the lower Silurian (Llandovery) of northern peri-Gondwana – exemplified by Barrandian area, Czech Republic. Supplemento al Bolletino della Società Paleonto­logica Italiana48(1), 347–348. 

Walasek, N., Loydell, D. K., Frýda, J., Männik, P. and Loveridge, R. F. 2018. Integrated graptolite-conodont bio­stratigraphy and organic carbon chemostratigraphy of the Llandovery of Kallholn quarry, Dalarna, Sweden. Palaeo­geography, Palaeoclimatology, Palaeoecology508, 1–16.

Wenzel, B. and Joachimski, M. M. 1996. Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology122(1–4), 143–166.

Back to Issue